The Limiting Distribution of the Hook Length of a Randomly Chosen Cell in a Random Young Diagram
Informatics and Automation, Branching Processes and Related Topics, Tome 316 (2022), pp. 285-297

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $p(n)$ be the number of all integer partitions of the positive integer $n$, and let $\lambda $ be a partition selected uniformly at random from among all such $p(n)$ partitions. It is well known that each partition $\lambda $ has a unique graphical representation composed of $n$ non-overlapping cells in the plane, called a Young diagram. As a second step of our sampling experiment, we select a cell $c$ uniformly at random from among the $n$ cells of the Young diagram of the partition $\lambda $. For large $n$, we study the asymptotic behavior of the hook length $Z_n=Z_n(\lambda ,c)$ of the cell $c$ of a random partition $\lambda $. This two-step sampling procedure suggests a product probability measure, which assigns the probability $1/np(n)$ to each pair $(\lambda ,c)$. With respect to this probability measure, we show that the random variable $\pi Z_n/\sqrt {6n}$ converges weakly, as $n\to \infty $, to a random variable whose probability density function equals $6y/(\pi ^2(e^y-1))$ if $0$, and zero elsewhere. Our method of proof is based on Hayman's saddle point approach for admissible power series.
Mots-clés : integer partition
Keywords: Young diagram, hook length, limiting distribution.
@article{TRSPY_2022_316_a18,
     author = {Ljuben R. Mutafchiev},
     title = {The {Limiting} {Distribution} of the {Hook} {Length} of a {Randomly} {Chosen} {Cell} in a {Random} {Young} {Diagram}},
     journal = {Informatics and Automation},
     pages = {285--297},
     publisher = {mathdoc},
     volume = {316},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a18/}
}
TY  - JOUR
AU  - Ljuben R. Mutafchiev
TI  - The Limiting Distribution of the Hook Length of a Randomly Chosen Cell in a Random Young Diagram
JO  - Informatics and Automation
PY  - 2022
SP  - 285
EP  - 297
VL  - 316
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a18/
LA  - ru
ID  - TRSPY_2022_316_a18
ER  - 
%0 Journal Article
%A Ljuben R. Mutafchiev
%T The Limiting Distribution of the Hook Length of a Randomly Chosen Cell in a Random Young Diagram
%J Informatics and Automation
%D 2022
%P 285-297
%V 316
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a18/
%G ru
%F TRSPY_2022_316_a18
Ljuben R. Mutafchiev. The Limiting Distribution of the Hook Length of a Randomly Chosen Cell in a Random Young Diagram. Informatics and Automation, Branching Processes and Related Topics, Tome 316 (2022), pp. 285-297. http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a18/