Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2022_316_a18, author = {Ljuben R. Mutafchiev}, title = {The {Limiting} {Distribution} of the {Hook} {Length} of a {Randomly} {Chosen} {Cell} in a {Random} {Young} {Diagram}}, journal = {Informatics and Automation}, pages = {285--297}, publisher = {mathdoc}, volume = {316}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a18/} }
TY - JOUR AU - Ljuben R. Mutafchiev TI - The Limiting Distribution of the Hook Length of a Randomly Chosen Cell in a Random Young Diagram JO - Informatics and Automation PY - 2022 SP - 285 EP - 297 VL - 316 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a18/ LA - ru ID - TRSPY_2022_316_a18 ER -
Ljuben R. Mutafchiev. The Limiting Distribution of the Hook Length of a Randomly Chosen Cell in a Random Young Diagram. Informatics and Automation, Branching Processes and Related Topics, Tome 316 (2022), pp. 285-297. http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a18/
[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publ., New York, 1965 ; Endryus G., Teoriya razbienii, Nauka, M., 1982 | MR
[2] G. E. Andrews, The Theory of Partitions, Encycl. Math. Appl., 2, Addison-Wesley, Reading, MA, 1976 | MR | Zbl
[3] Bogachev L.V., “Unified derivation of the limit shape for multiplicative ensembles of random integer partitions with equiweighted parts”, Random Struct. Algorithms, 47:2 (2015), 227–266 | DOI | MR | Zbl
[4] Corteel S., Pittel B., Savage C.D., Wilf H.S., “On the multiplicity of parts in a random partition”, Random Stuct. Algorithms, 14:2 (1999), 185–197 | 3.0.CO;2-F class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[5] Erdős P., Lehner J., “The distribution of the number of summands in the partitions of a positive integer”, Duke Math. J., 8 (1941), 335–345 | MR
[6] Erdős P., Szalay M., “On the statistical theory of partitions”, Topics in classical number theory: Colloq. Budapest 1981, v. I, ed. by G. Halász, North-Holland, Amsterdam, 1984, 397–450 | MR
[7] Flajolet P., Sedgewick R., Analytic combinatorics, Cambridge Univ. Press, Cambridge, 2009 | MR | Zbl
[8] Frame J.S., Robinson G. de B., Thrall R.M., “The hook graphs of the symmetric group”, Can. J. Math., 6 (1954), 316–324 | DOI | MR | Zbl
[9] Fristedt B., “The structure of random partitions of large integers”, Trans. Amer. Math. Soc., 337:2 (1993), 703–735 | DOI | MR | Zbl
[10] Grabner P.J., Knopfmacher A., Wagner S., “A general asymptotic scheme for the analysis of partition statistics”, Comb. Probab. Comput., 23:6 (2014), 1057–1086 | DOI | MR | Zbl
[11] Granovsky B.L., Stark D., Erlihson M., “Meinardus' theorem on weighted partitions: Extensions and a probabilistic proof”, Adv. Appl. Math., 41:3 (2008), 307–328 | DOI | MR | Zbl
[12] Greene C., Nijenhuis A., Wilf H.S., “A probabilistic proof of a formula for the number of Young tableaux of a given shape”, Adv. Math., 31 (1979), 104–109 | DOI | MR | Zbl
[13] Han G.-N., An explicit expansion formula for the powers of the Euler product in terms of partition hook lengths, E-print, 2008, arXiv: 0804.1849 [math.CO]
[14] Hardy G.H., Ramanujan S., “Asymptotic formulae in combinatory analysis”, Proc. London Math. Soc. Ser. 2, 17 (1918), 75–115 | DOI | MR | Zbl
[15] Hayman W.K., “A generalisation of Stirling's formula”, J. reine angew. Math., 196 (1956), 67–95 | DOI | MR | Zbl
[16] Knuth D.E., The art of computer programming, v. 3, Sorting and searching, 2nd ed., Addison-Wesley, Reading, MA, 1998 | MR | MR
[17] Ledermann W., Introduction to group characters, 2nd ed., Cambridge Univ. Press, Cambridge, 1987 ; Loev M., Teoriya veroyatnostei, Izd-vo inostr. lit., M., 1962 | MR | Zbl | MR
[18] M. Loève, Probability Theory, 2nd ed., Van Nostrand, Princeton, NJ, 1960 | MR | MR | Zbl
[19] Meinardus G., “Asymptotische Aussagen über Partitionen”, Math. Z., 59 (1954), 388–398 | DOI | MR | Zbl
[20] Mutafchiev L.R., “On the maximal multiplicity of parts in a random integer partition”, Ramanujan J., 9:3 (2005), 305–316 | DOI | MR | Zbl
[21] Mutafchiev L., “The size of the largest part of random weighted partitions of large integers”, Comb. Probab. Comput., 22:3 (2013), 433–454 | DOI | MR | Zbl
[22] Mutafchiev L., “Sampling part sizes of random integer partitions”, Ramanujan J., 37:2 (2015), 329–343 | DOI | MR | Zbl
[23] Mutafchiev L., “Sampling parts of random integer partitions: A probabilistic and asymptotic analysis”, Pure Math. Appl., 25:1 (2015), 79–95 | MR | Zbl
[24] Pittel B., “On a likely shape of the random Ferrers diagram”, Adv. Appl. Math., 18:4 (1997), 432–488 | DOI | MR | Zbl
[25] Rademacher H., “On the partition function $p(n)$”, Proc. London Math. Soc. Ser. 2, 43 (1937), 241–254 | MR
[26] Szalay M., Turán P., “On some problems of the statistical theory of partitions with application to characters of the symmetric group. I”, Acta math. Acad. sci. Hung., 29 (1977), 361–379 | DOI | MR | Zbl
[27] Szalay M., Turán P., “On some problems of the statistical theory of partitions with application to characters of the symmetric group. II”, Acta math. Acad. sci. Hung., 29 (1977), 381–392 | DOI | MR | Zbl
[28] Szalay M., Turán P., “On some problems of the statistical theory of partitions with application to characters of the symmetric group. III”, Acta math. Acad. sci. Hung., 32 (1978), 129–155 | DOI | MR | Zbl
[29] Temperley H.N.V., “Statistical mechanics and the partition of numbers. II: The form of crystal surfaces”, Math. Proc. Cambridge Philos. Soc., 48:4 (1952), 683–697 | DOI | MR
[30] A. M. Vershik, “Statistical mechanics of combinatorial partitions, and their limit shapes”, Funct. Anal. Appl., 30:2 (1996), 90–105 | DOI | MR | MR | Zbl
[31] Wagner S., “Limit distributions of smallest gap and largest repeated part in integer partitions”, Ramanujan J., 25:2 (2011), 229–246 | DOI | MR | Zbl
[32] Young A., “On quantitative substitutional analysis”, Proc. London Math. Soc., 33 (1901), 97–146 | MR | Zbl
[33] Young A., “On quantitative substitutional analysis. II”, Proc. London Math. Soc., 34 (1902), 361–397 | MR | Zbl