The Limiting Distribution of the Hook Length of a Randomly Chosen Cell in a Random Young Diagram
Informatics and Automation, Branching Processes and Related Topics, Tome 316 (2022), pp. 285-297.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $p(n)$ be the number of all integer partitions of the positive integer $n$, and let $\lambda $ be a partition selected uniformly at random from among all such $p(n)$ partitions. It is well known that each partition $\lambda $ has a unique graphical representation composed of $n$ non-overlapping cells in the plane, called a Young diagram. As a second step of our sampling experiment, we select a cell $c$ uniformly at random from among the $n$ cells of the Young diagram of the partition $\lambda $. For large $n$, we study the asymptotic behavior of the hook length $Z_n=Z_n(\lambda ,c)$ of the cell $c$ of a random partition $\lambda $. This two-step sampling procedure suggests a product probability measure, which assigns the probability $1/np(n)$ to each pair $(\lambda ,c)$. With respect to this probability measure, we show that the random variable $\pi Z_n/\sqrt {6n}$ converges weakly, as $n\to \infty $, to a random variable whose probability density function equals $6y/(\pi ^2(e^y-1))$ if $0$, and zero elsewhere. Our method of proof is based on Hayman's saddle point approach for admissible power series.
Mots-clés : integer partition
Keywords: Young diagram, hook length, limiting distribution.
@article{TRSPY_2022_316_a18,
     author = {Ljuben R. Mutafchiev},
     title = {The {Limiting} {Distribution} of the {Hook} {Length} of a {Randomly} {Chosen} {Cell} in a {Random} {Young} {Diagram}},
     journal = {Informatics and Automation},
     pages = {285--297},
     publisher = {mathdoc},
     volume = {316},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a18/}
}
TY  - JOUR
AU  - Ljuben R. Mutafchiev
TI  - The Limiting Distribution of the Hook Length of a Randomly Chosen Cell in a Random Young Diagram
JO  - Informatics and Automation
PY  - 2022
SP  - 285
EP  - 297
VL  - 316
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a18/
LA  - ru
ID  - TRSPY_2022_316_a18
ER  - 
%0 Journal Article
%A Ljuben R. Mutafchiev
%T The Limiting Distribution of the Hook Length of a Randomly Chosen Cell in a Random Young Diagram
%J Informatics and Automation
%D 2022
%P 285-297
%V 316
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a18/
%G ru
%F TRSPY_2022_316_a18
Ljuben R. Mutafchiev. The Limiting Distribution of the Hook Length of a Randomly Chosen Cell in a Random Young Diagram. Informatics and Automation, Branching Processes and Related Topics, Tome 316 (2022), pp. 285-297. http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a18/

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publ., New York, 1965 ; Endryus G., Teoriya razbienii, Nauka, M., 1982 | MR

[2] G. E. Andrews, The Theory of Partitions, Encycl. Math. Appl., 2, Addison-Wesley, Reading, MA, 1976 | MR | Zbl

[3] Bogachev L.V., “Unified derivation of the limit shape for multiplicative ensembles of random integer partitions with equiweighted parts”, Random Struct. Algorithms, 47:2 (2015), 227–266 | DOI | MR | Zbl

[4] Corteel S., Pittel B., Savage C.D., Wilf H.S., “On the multiplicity of parts in a random partition”, Random Stuct. Algorithms, 14:2 (1999), 185–197 | 3.0.CO;2-F class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[5] Erdős P., Lehner J., “The distribution of the number of summands in the partitions of a positive integer”, Duke Math. J., 8 (1941), 335–345 | MR

[6] Erdős P., Szalay M., “On the statistical theory of partitions”, Topics in classical number theory: Colloq. Budapest 1981, v. I, ed. by G. Halász, North-Holland, Amsterdam, 1984, 397–450 | MR

[7] Flajolet P., Sedgewick R., Analytic combinatorics, Cambridge Univ. Press, Cambridge, 2009 | MR | Zbl

[8] Frame J.S., Robinson G. de B., Thrall R.M., “The hook graphs of the symmetric group”, Can. J. Math., 6 (1954), 316–324 | DOI | MR | Zbl

[9] Fristedt B., “The structure of random partitions of large integers”, Trans. Amer. Math. Soc., 337:2 (1993), 703–735 | DOI | MR | Zbl

[10] Grabner P.J., Knopfmacher A., Wagner S., “A general asymptotic scheme for the analysis of partition statistics”, Comb. Probab. Comput., 23:6 (2014), 1057–1086 | DOI | MR | Zbl

[11] Granovsky B.L., Stark D., Erlihson M., “Meinardus' theorem on weighted partitions: Extensions and a probabilistic proof”, Adv. Appl. Math., 41:3 (2008), 307–328 | DOI | MR | Zbl

[12] Greene C., Nijenhuis A., Wilf H.S., “A probabilistic proof of a formula for the number of Young tableaux of a given shape”, Adv. Math., 31 (1979), 104–109 | DOI | MR | Zbl

[13] Han G.-N., An explicit expansion formula for the powers of the Euler product in terms of partition hook lengths, E-print, 2008, arXiv: 0804.1849 [math.CO]

[14] Hardy G.H., Ramanujan S., “Asymptotic formulae in combinatory analysis”, Proc. London Math. Soc. Ser. 2, 17 (1918), 75–115 | DOI | MR | Zbl

[15] Hayman W.K., “A generalisation of Stirling's formula”, J. reine angew. Math., 196 (1956), 67–95 | DOI | MR | Zbl

[16] Knuth D.E., The art of computer programming, v. 3, Sorting and searching, 2nd ed., Addison-Wesley, Reading, MA, 1998 | MR | MR

[17] Ledermann W., Introduction to group characters, 2nd ed., Cambridge Univ. Press, Cambridge, 1987 ; Loev M., Teoriya veroyatnostei, Izd-vo inostr. lit., M., 1962 | MR | Zbl | MR

[18] M. Loève, Probability Theory, 2nd ed., Van Nostrand, Princeton, NJ, 1960 | MR | MR | Zbl

[19] Meinardus G., “Asymptotische Aussagen über Partitionen”, Math. Z., 59 (1954), 388–398 | DOI | MR | Zbl

[20] Mutafchiev L.R., “On the maximal multiplicity of parts in a random integer partition”, Ramanujan J., 9:3 (2005), 305–316 | DOI | MR | Zbl

[21] Mutafchiev L., “The size of the largest part of random weighted partitions of large integers”, Comb. Probab. Comput., 22:3 (2013), 433–454 | DOI | MR | Zbl

[22] Mutafchiev L., “Sampling part sizes of random integer partitions”, Ramanujan J., 37:2 (2015), 329–343 | DOI | MR | Zbl

[23] Mutafchiev L., “Sampling parts of random integer partitions: A probabilistic and asymptotic analysis”, Pure Math. Appl., 25:1 (2015), 79–95 | MR | Zbl

[24] Pittel B., “On a likely shape of the random Ferrers diagram”, Adv. Appl. Math., 18:4 (1997), 432–488 | DOI | MR | Zbl

[25] Rademacher H., “On the partition function $p(n)$”, Proc. London Math. Soc. Ser. 2, 43 (1937), 241–254 | MR

[26] Szalay M., Turán P., “On some problems of the statistical theory of partitions with application to characters of the symmetric group. I”, Acta math. Acad. sci. Hung., 29 (1977), 361–379 | DOI | MR | Zbl

[27] Szalay M., Turán P., “On some problems of the statistical theory of partitions with application to characters of the symmetric group. II”, Acta math. Acad. sci. Hung., 29 (1977), 381–392 | DOI | MR | Zbl

[28] Szalay M., Turán P., “On some problems of the statistical theory of partitions with application to characters of the symmetric group. III”, Acta math. Acad. sci. Hung., 32 (1978), 129–155 | DOI | MR | Zbl

[29] Temperley H.N.V., “Statistical mechanics and the partition of numbers. II: The form of crystal surfaces”, Math. Proc. Cambridge Philos. Soc., 48:4 (1952), 683–697 | DOI | MR

[30] A. M. Vershik, “Statistical mechanics of combinatorial partitions, and their limit shapes”, Funct. Anal. Appl., 30:2 (1996), 90–105 | DOI | MR | MR | Zbl

[31] Wagner S., “Limit distributions of smallest gap and largest repeated part in integer partitions”, Ramanujan J., 25:2 (2011), 229–246 | DOI | MR | Zbl

[32] Young A., “On quantitative substitutional analysis”, Proc. London Math. Soc., 33 (1901), 97–146 | MR | Zbl

[33] Young A., “On quantitative substitutional analysis. II”, Proc. London Math. Soc., 34 (1902), 361–397 | MR | Zbl