Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2022_316_a14, author = {G\"otz Kersting}, title = {On the {Genealogical} {Structure} of {Critical} {Branching} {Processes} in a {Varying} {Environment}}, journal = {Informatics and Automation}, pages = {222--234}, publisher = {mathdoc}, volume = {316}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a14/} }
Götz Kersting. On the Genealogical Structure of Critical Branching Processes in a Varying Environment. Informatics and Automation, Branching Processes and Related Topics, Tome 316 (2022), pp. 222-234. http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a14/
[1] Bhattacharya N., Perlman M., Time-inhomogeneous branching processes conditioned on non-extinction, E-print, 2017, arXiv: 1703.00337 [math.PR]
[2] Borovkov K.A., Vatutin V.A., “Reduced critical branching processes in random environment”, Stoch. Process. Appl., 71:2 (1997), 225–240 | DOI | MR | Zbl
[3] Cardona-Tobón N., Palau S., “Yaglom's limit for critical Galton–Watson processes in varying environment: A probabilistic approach”, Bernoulli, 27:3 (2021), 1643–1665 ; arXiv: 2005.10186 [math.PR] | DOI | MR | Zbl
[4] Ethier S.N., Kurtz T.G., Markov processes: Characterization and convergence, J. Wiley Sons, New York, 1986 | MR | Zbl
[5] Fleischmann K., Siegmund-Schultze R., “The structure of reduced critical Galton–Watson processes”, Math. Nachr., 79 (1977), 233–241 | DOI | MR
[6] Geiger J., “Elementary new proofs of classical limit theorems for Galton–Watson processes”, J. Appl. Probab., 36:2 (1999), 301–309 | DOI | MR | Zbl
[7] Jagers P., “Galton–Watson processes in varying environments”, J. Appl. Probab., 11 (1974), 174–178 | DOI | MR | Zbl
[8] Kersting G., “A unifying approach to branching processes in a varying environment”, J. Appl. Probab., 57:1 (2020), 196–220 | DOI | MR | Zbl
[9] H. Kesten, P. Ney, and F. Spitzer, “The Galton–Watson process with mean one and finite variance”, Theory Probab. Appl., 11:4 (1966), 513–540 | DOI | MR | Zbl
[10] A. N. Kolmogorov, “Zur Lösung einer biologischen Aufgabe”, Mitt. Forsch.-Inst. Math. Mech. Univ. Tomsk, 2:1 (1938), 1–6 | Zbl
[11] MacPhee I.M., Schuh H.-J., “A Galton–Watson branching process in varying environments with essentially constant offspring means and two rates of growth”, Aust. J. Stat., 25 (1983), 329–338 | DOI | MR | Zbl
[12] V. A. Vatutin, “Reduced branching processes in random environment: The critical case”, Theory Probab. Appl., 47:1 (2003), 99–113 | DOI | MR | MR | Zbl
[13] Yaglom A.M., “Nekotorye predelnye teoremy teorii vetvyaschikhsya sluchainykh protsessov”, DAN SSSR, 56:8 (1947), 795–798 | Zbl
[14] A. M. Zubkov, “Limiting distributions of the distance to the closest common ancestor”, Theory Probab. Appl., 20:3 (1976), 602–612 | DOI | MR | Zbl