On the Genealogical Structure of Critical Branching Processes in a Varying Environment
Informatics and Automation, Branching Processes and Related Topics, Tome 316 (2022), pp. 222-234.

Voir la notice de l'article provenant de la source Math-Net.Ru

Critical branching processes in a varying environment behave much the same as critical Galton–Watson processes. In this note we like to confirm this finding with regard to the underlying genealogical structures. In particular, we consider the most recent common ancestor given survival and the corresponding reduced branching processes, in the spirit of Zubkov (1975) and Fleischmann and Siegmund-Schultze (1977).
Keywords: branching process, varying environment, Galton–Watson process, critical process, reduced process, most recent common ancestor, exponential distribution, Yule process.
@article{TRSPY_2022_316_a14,
     author = {G\"otz Kersting},
     title = {On the {Genealogical} {Structure} of {Critical} {Branching} {Processes} in a {Varying} {Environment}},
     journal = {Informatics and Automation},
     pages = {222--234},
     publisher = {mathdoc},
     volume = {316},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a14/}
}
TY  - JOUR
AU  - Götz Kersting
TI  - On the Genealogical Structure of Critical Branching Processes in a Varying Environment
JO  - Informatics and Automation
PY  - 2022
SP  - 222
EP  - 234
VL  - 316
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a14/
LA  - ru
ID  - TRSPY_2022_316_a14
ER  - 
%0 Journal Article
%A Götz Kersting
%T On the Genealogical Structure of Critical Branching Processes in a Varying Environment
%J Informatics and Automation
%D 2022
%P 222-234
%V 316
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a14/
%G ru
%F TRSPY_2022_316_a14
Götz Kersting. On the Genealogical Structure of Critical Branching Processes in a Varying Environment. Informatics and Automation, Branching Processes and Related Topics, Tome 316 (2022), pp. 222-234. http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a14/

[1] Bhattacharya N., Perlman M., Time-inhomogeneous branching processes conditioned on non-extinction, E-print, 2017, arXiv: 1703.00337 [math.PR]

[2] Borovkov K.A., Vatutin V.A., “Reduced critical branching processes in random environment”, Stoch. Process. Appl., 71:2 (1997), 225–240 | DOI | MR | Zbl

[3] Cardona-Tobón N., Palau S., “Yaglom's limit for critical Galton–Watson processes in varying environment: A probabilistic approach”, Bernoulli, 27:3 (2021), 1643–1665 ; arXiv: 2005.10186 [math.PR] | DOI | MR | Zbl

[4] Ethier S.N., Kurtz T.G., Markov processes: Characterization and convergence, J. Wiley Sons, New York, 1986 | MR | Zbl

[5] Fleischmann K., Siegmund-Schultze R., “The structure of reduced critical Galton–Watson processes”, Math. Nachr., 79 (1977), 233–241 | DOI | MR

[6] Geiger J., “Elementary new proofs of classical limit theorems for Galton–Watson processes”, J. Appl. Probab., 36:2 (1999), 301–309 | DOI | MR | Zbl

[7] Jagers P., “Galton–Watson processes in varying environments”, J. Appl. Probab., 11 (1974), 174–178 | DOI | MR | Zbl

[8] Kersting G., “A unifying approach to branching processes in a varying environment”, J. Appl. Probab., 57:1 (2020), 196–220 | DOI | MR | Zbl

[9] H. Kesten, P. Ney, and F. Spitzer, “The Galton–Watson process with mean one and finite variance”, Theory Probab. Appl., 11:4 (1966), 513–540 | DOI | MR | Zbl

[10] A. N. Kolmogorov, “Zur Lösung einer biologischen Aufgabe”, Mitt. Forsch.-Inst. Math. Mech. Univ. Tomsk, 2:1 (1938), 1–6 | Zbl

[11] MacPhee I.M., Schuh H.-J., “A Galton–Watson branching process in varying environments with essentially constant offspring means and two rates of growth”, Aust. J. Stat., 25 (1983), 329–338 | DOI | MR | Zbl

[12] V. A. Vatutin, “Reduced branching processes in random environment: The critical case”, Theory Probab. Appl., 47:1 (2003), 99–113 | DOI | MR | MR | Zbl

[13] Yaglom A.M., “Nekotorye predelnye teoremy teorii vetvyaschikhsya sluchainykh protsessov”, DAN SSSR, 56:8 (1947), 795–798 | Zbl

[14] A. M. Zubkov, “Limiting distributions of the distance to the closest common ancestor”, Theory Probab. Appl., 20:3 (1976), 602–612 | DOI | MR | Zbl