On the Genealogical Structure of Critical Branching Processes in a Varying Environment
Informatics and Automation, Branching Processes and Related Topics, Tome 316 (2022), pp. 222-234

Voir la notice de l'article provenant de la source Math-Net.Ru

Critical branching processes in a varying environment behave much the same as critical Galton–Watson processes. In this note we like to confirm this finding with regard to the underlying genealogical structures. In particular, we consider the most recent common ancestor given survival and the corresponding reduced branching processes, in the spirit of Zubkov (1975) and Fleischmann and Siegmund-Schultze (1977).
Keywords: branching process, varying environment, Galton–Watson process, critical process, reduced process, most recent common ancestor, exponential distribution, Yule process.
@article{TRSPY_2022_316_a14,
     author = {G\"otz Kersting},
     title = {On the {Genealogical} {Structure} of {Critical} {Branching} {Processes} in a {Varying} {Environment}},
     journal = {Informatics and Automation},
     pages = {222--234},
     publisher = {mathdoc},
     volume = {316},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a14/}
}
TY  - JOUR
AU  - Götz Kersting
TI  - On the Genealogical Structure of Critical Branching Processes in a Varying Environment
JO  - Informatics and Automation
PY  - 2022
SP  - 222
EP  - 234
VL  - 316
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a14/
LA  - ru
ID  - TRSPY_2022_316_a14
ER  - 
%0 Journal Article
%A Götz Kersting
%T On the Genealogical Structure of Critical Branching Processes in a Varying Environment
%J Informatics and Automation
%D 2022
%P 222-234
%V 316
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a14/
%G ru
%F TRSPY_2022_316_a14
Götz Kersting. On the Genealogical Structure of Critical Branching Processes in a Varying Environment. Informatics and Automation, Branching Processes and Related Topics, Tome 316 (2022), pp. 222-234. http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a14/