Superprocesses for the Population of Rabbits on Grassland
Informatics and Automation, Branching Processes and Related Topics, Tome 316 (2022), pp. 207-221.

Voir la notice de l'article provenant de la source Math-Net.Ru

Motivated by the control of rabbits on grassland, a model of a population with branching dynamics in a random environment is constructed. The system is described as the solution to a conditional martingale problem given the random environment which satisfies a stochastic partial differential equation (SPDE). The weak uniqueness of the solution to the system is established by characterizing its conditional log-Laplace transform through the solution to a related nonlinear SPDE.
Keywords: branching particle system, martingale problem, stochastic partial differential equation, weak uniqueness.
@article{TRSPY_2022_316_a13,
     author = {Lina Ji and Jie Xiong},
     title = {Superprocesses for the {Population} of {Rabbits} on {Grassland}},
     journal = {Informatics and Automation},
     pages = {207--221},
     publisher = {mathdoc},
     volume = {316},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a13/}
}
TY  - JOUR
AU  - Lina Ji
AU  - Jie Xiong
TI  - Superprocesses for the Population of Rabbits on Grassland
JO  - Informatics and Automation
PY  - 2022
SP  - 207
EP  - 221
VL  - 316
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a13/
LA  - ru
ID  - TRSPY_2022_316_a13
ER  - 
%0 Journal Article
%A Lina Ji
%A Jie Xiong
%T Superprocesses for the Population of Rabbits on Grassland
%J Informatics and Automation
%D 2022
%P 207-221
%V 316
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a13/
%G ru
%F TRSPY_2022_316_a13
Lina Ji; Jie Xiong. Superprocesses for the Population of Rabbits on Grassland. Informatics and Automation, Branching Processes and Related Topics, Tome 316 (2022), pp. 207-221. http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a13/

[1] Dawson D.A., “Measure-valued Markov processes”, Ecole d'été de probabilités de Saint-Flour XXI – 1991, Lect. Notes Math., 1541, Springer, Berlin, 1993, 1–260 | DOI | MR | Zbl

[2] Etheridge A.M., An introduction to superprocesses, Univ. Lect. Ser., 20, Amer. Math. Soc., Providence, RI, 2000 | DOI | MR | Zbl

[3] He H., Li Z., Xu W., “Continuous-state branching processes in Lévy random environments”, J. Theor. Probab., 31:4 (2018), 1952–1974 | DOI | MR | Zbl

[4] Ji L., Zheng X., “Moments of continuous-state branching processes in Lévy random environments”, Acta math. sci., 39 (2019), 781–796 | DOI | MR

[5] Le Gall J.-F., Spatial branching processes, random snakes and partial differential equations, Lect. Math. ETH Zürich, Birkhäuser, Basel, 1999 | MR | Zbl

[6] Lenhart S., Tang X., Xiong J., Yong J., “Controlled stochastic partial differential equations for rabbits on a grassland”, Acta math. appl. Sin. (Engl. Ser.), 36:2 (2020), 262–282 | DOI | MR | Zbl

[7] Lenhart S., Xiong J., Yong J., “Optimal controls for stochastic partial differential equations with an application in population modeling”, SIAM J. Control. Optim., 54:2 (2016), 495–535 | DOI | MR | Zbl

[8] Li Z., Measure-valued branching Markov processes, Springer, Berlin, 2011 | MR | Zbl

[9] Li Z., Wang H., Xiong J., “A degenerate stochastic partial differential equation for superprocesses with singular interaction”, Probab. Theory Relat. Fields, 130:1 (2004), 1–17 | MR | Zbl

[10] Li Z., Wang H., Xiong J., “Conditional log-Laplace functionals of immigration superprocesses with dependent spatial motion”, Acta appl. math., 88:2 (2005), 143–175 | DOI | MR | Zbl

[11] Li Z., Xiong J., Zhang M., “Ergodic theory for a superprocess over a stochastic flow”, Stoch. Process. Appl., 120:8 (2010), 1563–1588 | DOI | MR | Zbl

[12] Mytnik L., “Superprocesses in random environments”, Ann. Probab., 24:4 (1996), 1953–1978 | DOI | MR | Zbl

[13] Perkins E., “Dawson–Watanabe superprocesses and measure-valued diffusions”, Lectures on probability theory and statistics: Ecole d'été de probabilités de Saint-Flour XXIX, 1999, Lect. Notes Math., 1781, Springer, Berlin, 2002, 125–329 | MR | Zbl

[14] Palau S., Pardo J.C., “Continuous state branching processes in random environment: The Brownian case”, Stoch. Process. Appl., 127:3 (2017), 957–994 | DOI | MR | Zbl

[15] Palau S., Pardo J.C., “Branching processes in a Lévy random environment”, Acta appl. math., 153:1 (2018), 55–79 | DOI | MR | Zbl

[16] Pardoux É., Probabilistic models of population evolution: Scaling limits, genealogies and interactions, Springer, Cham, 2016 | MR | Zbl

[17] Skoulakis G., Adler R.J., “Superprocesses over a stochastic flow”, Ann. Appl. Probab., 11:2 (2001), 488–543 | MR | Zbl

[18] Wang H., “Conditional log-Laplace functional for a class of branching processes in random environments”, Acta math. Sin. (Engl. Ser.), 31:1 (2015), 71–90 | DOI | MR | Zbl

[19] Watanabe S., “A limit theorem of branching processes and continuous state branching processes”, J. Math. Kyoto Univ., 8 (1968), 141–167 | MR | Zbl

[20] Xiong J., “A stochastic log-Laplace equation”, Ann. Probab., 32:3B (2004), 2362–2388 | MR | Zbl

[21] Xiong J., “Long-term behavior for superprocesses over a stochastic flow”, Electron. Commun. Probab., 9 (2004), 36–52 | DOI | MR | Zbl

[22] Xiong J., Three classes of nonlinear stochastic partial differential equations, World Scientific, Singapore, 2013 | MR | Zbl

[23] Zhang M., “Central limit theorems for a super-diffusion over a stochastic flow”, J. Theor. Probab., 24:1 (2011), 294–306 | DOI | MR | Zbl