Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2022_316_a11, author = {Ion Grama and Quansheng Liu and Erwan Pin}, title = {Convergence in $L^p$ for a {Supercritical} {Multi-type} {Branching} {Process} in a {Random} {Environment}}, journal = {Informatics and Automation}, pages = {169--194}, publisher = {mathdoc}, volume = {316}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a11/} }
TY - JOUR AU - Ion Grama AU - Quansheng Liu AU - Erwan Pin TI - Convergence in $L^p$ for a Supercritical Multi-type Branching Process in a Random Environment JO - Informatics and Automation PY - 2022 SP - 169 EP - 194 VL - 316 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a11/ LA - ru ID - TRSPY_2022_316_a11 ER -
%0 Journal Article %A Ion Grama %A Quansheng Liu %A Erwan Pin %T Convergence in $L^p$ for a Supercritical Multi-type Branching Process in a Random Environment %J Informatics and Automation %D 2022 %P 169-194 %V 316 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a11/ %G ru %F TRSPY_2022_316_a11
Ion Grama; Quansheng Liu; Erwan Pin. Convergence in $L^p$ for a Supercritical Multi-type Branching Process in a Random Environment. Informatics and Automation, Branching Processes and Related Topics, Tome 316 (2022), pp. 169-194. http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a11/