Convergence in $L^p$ for a Supercritical Multi-type Branching Process in a Random Environment
Informatics and Automation, Branching Processes and Related Topics, Tome 316 (2022), pp. 169-194
Voir la notice de l'article provenant de la source Math-Net.Ru
Consider a $d$-type supercritical branching process $Z_n^i=(Z_n^i(1),\ldots ,Z_n^i(d))$, $n\geq 0$, in an independent and identically distributed random environment $\xi =(\xi _0,\xi _1,\ldots )$, starting with one initial particle of type $i$. In a previous paper we have established a Kesten–Stigum type theorem for $Z_n^i$, which implies that for any $1\leq i,j\leq d$, $Z_n^i(j)/\mathbb E_\xi Z_n^i(j) \to W^i$ in probability as $n \to +\infty $, where $\mathbb E_\xi Z_n^i(j)$ is the conditional expectation of $Z_n^i(j)$ given the environment $\xi $ and $W^i$ is a non-negative and finite random variable. The goal of this paper is to obtain a necessary and sufficient condition for the convergence in $L^p$ of $Z_n^i(j)/\mathbb E_\xi Z_n^i(j)$, and to prove that the convergence rate is exponential. To this end, we first establish the corresponding results for the fundamental martingale $(W_n^i)$ associated to the branching process $(Z_n^i)$.
@article{TRSPY_2022_316_a11,
author = {Ion Grama and Quansheng Liu and Erwan Pin},
title = {Convergence in $L^p$ for a {Supercritical} {Multi-type} {Branching} {Process} in a {Random} {Environment}},
journal = {Informatics and Automation},
pages = {169--194},
publisher = {mathdoc},
volume = {316},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a11/}
}
TY - JOUR AU - Ion Grama AU - Quansheng Liu AU - Erwan Pin TI - Convergence in $L^p$ for a Supercritical Multi-type Branching Process in a Random Environment JO - Informatics and Automation PY - 2022 SP - 169 EP - 194 VL - 316 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a11/ LA - ru ID - TRSPY_2022_316_a11 ER -
%0 Journal Article %A Ion Grama %A Quansheng Liu %A Erwan Pin %T Convergence in $L^p$ for a Supercritical Multi-type Branching Process in a Random Environment %J Informatics and Automation %D 2022 %P 169-194 %V 316 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a11/ %G ru %F TRSPY_2022_316_a11
Ion Grama; Quansheng Liu; Erwan Pin. Convergence in $L^p$ for a Supercritical Multi-type Branching Process in a Random Environment. Informatics and Automation, Branching Processes and Related Topics, Tome 316 (2022), pp. 169-194. http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a11/