A Scaling Limit Theorem for Galton--Watson Processes in Varying Environments
Informatics and Automation, Branching Processes and Related Topics, Tome 316 (2022), pp. 145-168.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a scaling limit theorem for discrete Galton–Watson processes in varying environments. A simple sufficient condition for the weak convergence in the Skorokhod space is given in terms of probability generating functions. The limit theorem gives rise to the continuous-state branching processes in varying environments studied recently by several authors.
Keywords: Galton–Watson processes, continuous state, varying environments, probability generating functions, scaling limits.
@article{TRSPY_2022_316_a10,
     author = {Rongjuan Fang and Zenghu Li and Jiawei Liu},
     title = {A {Scaling} {Limit} {Theorem} for {Galton--Watson} {Processes} in {Varying} {Environments}},
     journal = {Informatics and Automation},
     pages = {145--168},
     publisher = {mathdoc},
     volume = {316},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a10/}
}
TY  - JOUR
AU  - Rongjuan Fang
AU  - Zenghu Li
AU  - Jiawei Liu
TI  - A Scaling Limit Theorem for Galton--Watson Processes in Varying Environments
JO  - Informatics and Automation
PY  - 2022
SP  - 145
EP  - 168
VL  - 316
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a10/
LA  - ru
ID  - TRSPY_2022_316_a10
ER  - 
%0 Journal Article
%A Rongjuan Fang
%A Zenghu Li
%A Jiawei Liu
%T A Scaling Limit Theorem for Galton--Watson Processes in Varying Environments
%J Informatics and Automation
%D 2022
%P 145-168
%V 316
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a10/
%G ru
%F TRSPY_2022_316_a10
Rongjuan Fang; Zenghu Li; Jiawei Liu. A Scaling Limit Theorem for Galton--Watson Processes in Varying Environments. Informatics and Automation, Branching Processes and Related Topics, Tome 316 (2022), pp. 145-168. http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a10/

[1] Afanasyev V.I., Böinghoff C., Kersting G., Vatutin V.A., “Limit theorems for weakly subcritical branching processes in random environment”, J. Theor. Probab., 25:3 (2012), 703–732 | DOI | MR | Zbl

[2] Afanasyev V.I., Geiger J., Kersting G., Vatutin V.A., “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673 | DOI | MR | Zbl

[3] Agresti A., “On the extinction times of varying and random environment branching processes”, J. Appl. Probab., 12:1 (1975), 39–46 | DOI | MR | Zbl

[4] S. A. Aliev and V. M. Shurenkov, “Transitional phenomena and the convergence of Galton–Watson processes to Jiřina processes”, Theory Probab. Appl., 27:3 (1983), 472–485 | DOI | MR | Zbl

[5] V. Bansaye and C. Böinghoff, “Lower large deviations for supercritical branching processes in random environment”, Proc. Steklov Inst. Math., 282 (2013), 15–34 | DOI | MR | Zbl

[6] Bansaye V., Kurtz T.G., Simatos F., “Tightness for processes with fixed points of discontinuities and applications in varying environment”, Electron. Commun. Probab., 21 (2016), 81 | DOI | MR | Zbl

[7] Bansaye V., Simatos F., “On the scaling limits of Galton–Watson processes in varying environments”, Electron. J. Probab., 20 (2015), 75 | DOI | MR | Zbl

[8] Church J.D., “On infinite composition products of probability generating functions”, Z. Wahrscheinlichkeitstheor. verw. Geb., 19 (1971), 243–256 | DOI | MR

[9] Dawson D.A., Li Z., “Skew convolution semigroups and affine Markov processes”, Ann. Probab., 34:3 (2006), 1103–1142 | DOI | MR | Zbl

[10] Dawson D.A., Li Z., “Stochastic equations, flows and measure-valued processes”, Ann. Probab., 40:2 (2012), 813–857 | DOI | MR | Zbl

[11] Fang R., Li Z., Construction of continuous-state branching processes in varying environments, E-print, 2020, arXiv: 2002.09113v2 [math.PR]

[12] Feller W., “Diffusion processes in genetics”, Proc. Second Berkeley Symposium on Mathematical Statistics and Probability (Univ. Calif. 1950), Univ. Calif. Press, Berkeley, 1951, 227–246 | MR

[13] Fujimagari T., “On the extinction time distribution of a branching process in varying environments”, Adv. Appl. Probab., 12 (1980), 350–366 | DOI | MR | Zbl

[14] Grimvall A., “On the convergence of sequences of branching processes”, Ann. Probab., 2 (1974), 1027–1045 | DOI | MR | Zbl

[15] Jiřina M., “Stochastic branching processes with continuous state space”, Czech. Math. J., 8 (1958), 292–313 | DOI | MR

[16] Kersting J., Vatutin V., Discrete time branching processes in random environment, J. Wiley Sons, Hoboken, NJ, 2017 | Zbl

[17] Lamperti J., “The limit of a sequence of branching processes”, Z. Wahrscheinlichkeitstheor. verw. Geb., 7 (1967), 271–288 | DOI | MR | Zbl

[18] Li Z., “A limit theorem for discrete Galton–Watson branching processes with immigration”, J. Appl. Probab., 43:1 (2006), 289–295 | DOI | MR | Zbl

[19] Li Z., Measure-valued branching Markov processes, Springer, Berlin, 2011 | MR | Zbl

[20] Lindvall T., “Almost sure convergence of branching processes in varying and random environments”, Ann. Probab., 2 (1974), 344–346 | DOI | MR | Zbl

[21] MacPhee I.M., Schuh H.-J., “A Galton–Watson branching process in varying environments with essentially constant offspring means and two rates of growth”, Aust. J. Stat., 25 (1983), 329–338 | DOI | MR | Zbl