A Scaling Limit Theorem for Galton--Watson Processes in Varying Environments
Informatics and Automation, Branching Processes and Related Topics, Tome 316 (2022), pp. 145-168

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a scaling limit theorem for discrete Galton–Watson processes in varying environments. A simple sufficient condition for the weak convergence in the Skorokhod space is given in terms of probability generating functions. The limit theorem gives rise to the continuous-state branching processes in varying environments studied recently by several authors.
Keywords: Galton–Watson processes, continuous state, varying environments, probability generating functions, scaling limits.
@article{TRSPY_2022_316_a10,
     author = {Rongjuan Fang and Zenghu Li and Jiawei Liu},
     title = {A {Scaling} {Limit} {Theorem} for {Galton--Watson} {Processes} in {Varying} {Environments}},
     journal = {Informatics and Automation},
     pages = {145--168},
     publisher = {mathdoc},
     volume = {316},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a10/}
}
TY  - JOUR
AU  - Rongjuan Fang
AU  - Zenghu Li
AU  - Jiawei Liu
TI  - A Scaling Limit Theorem for Galton--Watson Processes in Varying Environments
JO  - Informatics and Automation
PY  - 2022
SP  - 145
EP  - 168
VL  - 316
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a10/
LA  - ru
ID  - TRSPY_2022_316_a10
ER  - 
%0 Journal Article
%A Rongjuan Fang
%A Zenghu Li
%A Jiawei Liu
%T A Scaling Limit Theorem for Galton--Watson Processes in Varying Environments
%J Informatics and Automation
%D 2022
%P 145-168
%V 316
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a10/
%G ru
%F TRSPY_2022_316_a10
Rongjuan Fang; Zenghu Li; Jiawei Liu. A Scaling Limit Theorem for Galton--Watson Processes in Varying Environments. Informatics and Automation, Branching Processes and Related Topics, Tome 316 (2022), pp. 145-168. http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a10/