Minimization of Degenerate Integral Quadratic Functionals
Informatics and Automation, Optimal Control and Differential Games, Tome 315 (2021), pp. 108-127.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a method for finding the infimum of a degenerate integral quadratic functional by passing from a given functional to another quadratic functional that is nondegenerate with respect to some new control. The minimum point of the latter can be found by a standard procedure. This point corresponds to a minimizing sequence for the original functional. The advantage of this method over the well-known regularization method (addition of a small nondegenerate term) is that the latter requires solving a parametric series of problems with a vanishingly small additional term, while our method deals with a single problem.
@article{TRSPY_2021_315_a7,
     author = {A. V. Dmitruk and N. A. Manuilovich},
     title = {Minimization of {Degenerate} {Integral} {Quadratic} {Functionals}},
     journal = {Informatics and Automation},
     pages = {108--127},
     publisher = {mathdoc},
     volume = {315},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_315_a7/}
}
TY  - JOUR
AU  - A. V. Dmitruk
AU  - N. A. Manuilovich
TI  - Minimization of Degenerate Integral Quadratic Functionals
JO  - Informatics and Automation
PY  - 2021
SP  - 108
EP  - 127
VL  - 315
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2021_315_a7/
LA  - ru
ID  - TRSPY_2021_315_a7
ER  - 
%0 Journal Article
%A A. V. Dmitruk
%A N. A. Manuilovich
%T Minimization of Degenerate Integral Quadratic Functionals
%J Informatics and Automation
%D 2021
%P 108-127
%V 315
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2021_315_a7/
%G ru
%F TRSPY_2021_315_a7
A. V. Dmitruk; N. A. Manuilovich. Minimization of Degenerate Integral Quadratic Functionals. Informatics and Automation, Optimal Control and Differential Games, Tome 315 (2021), pp. 108-127. http://geodesic.mathdoc.fr/item/TRSPY_2021_315_a7/

[1] Anderson B.D.O., Moore J.B., Optimal control: Linear quadratic methods, Prentice Hall, Englewood Cliffs, NJ, 1990

[2] Bernstein D.S., Zeidan V., “The singular linear–quadratic regulator problem and the Goh–Riccati equation”, Decision and control: Proc. 29th IEEE Conf. (Honolulu, 1990), v. 1, IEEE, Washington, DC, 1990, 334–339 | DOI

[3] A. E. Bryson Jr. and Yu-Chi Ho, Applied Optimal Control: Optimization, Estimation and Control, Blaisdell Publ., Walltham, MA, 1969

[4] Clements D.J., Anderson B.D.O., Singular optimal control: The linear–quadratic problem, Lect. Notes Control Inf. Sci., 5, Springer, Berlin, 1978

[5] M. G. Dmitriev and G. A. Kurina, “Singular perturbations in control problems”, Autom. Remote Control, 67:1 (2006), 1–43 | DOI | MR

[6] A. V. Dmitruk, “Quadratic conditions for a weak minimum for singular regimes in optimal control problems”, Sov. Math., Dokl., 18 (1977), 418–422 | MR

[7] A. V. Dmitruk, “Quadratic conditions for a Pontryagin minimum in an optimum control problem linear in the control. I: A decoding theorem”, Math. USSR, Izv., 28:2 (1987), 275–303 | DOI | MR

[8] Dmitruk A.V., “Jacobi type conditions for singular extremals”, Control Cybern., 37:2 (2008), 285–306 | MR

[9] Dmitruk A.V., Parilova N.A., “On the minimization of a degenerate quadratic functional”, IFAC-PapersOnLine, 51:32 (2018), 708–711 | DOI

[10] A. V. Dmitruk and K. K. Shishov, “Analysis of a quadratic functional with a partly degenerate Legendre condition”, Moscow Univ. Comput. Math. Cybern., 34:2 (2010), 56–65 | DOI

[11] I. M. Gelfand and S. V. Fomin, Calculus of Variations, Prentice-Hall, Englewood Cliffs, NJ, 1965

[12] Glizer V.Y., “Solution of a singular optimal control problem with state delays: A cheap control approach”, Optimization theory and related topics: A workshop in memory of Dan Butnariu (Haifa, 2010), Contemp. Math., 568, ed. by S. Reich, A.J. Zaslavski, Amer. Math. Soc., Providence, RI, 2012, 77–107 | DOI

[13] Goh B.S., “Necessary conditions for singular extremals involving multiple control variables”, SIAM J. Control, 4:4 (1966), 716–731 | DOI | MR

[14] Hestenes M.R., “Quadratic control problems”, J. Optim. Theory Appl., 17:1/2 (1975), 1–42 | DOI | MR

[15] A. D. Ioffe and V. M. Tikhomirov, Theory of Extremal Problems, North-Holland, Amsterdam, 2009

[16] Jacobson D.H., “A general sufficiency theorem for the second variation”, J. Math. Anal. Appl., 34 (1971), 578–589 | DOI | MR

[17] Jameson A., O'Malley R.E., \textup {Jr.}, “Cheap control of the time-invariant regulator”, Appl. Math. Optim., 1:4 (1975), 337–354 | DOI

[18] Milyutin A.A., Dmitruk A.V., Osmolovskii N.P., Printsip maksimuma v optimalnom upravlenii, Izd. Tsentra prikl. issl. pri mekh.-mat. fak. MGU, M., 2004

[19] Moylan P.J., Moore J.B., “Generalizations of singular optimal control theory”, Automatica, 7 (1971), 591–598 | DOI

[20] O'Reilly J., “Partial cheap control of the time-invariant regulator”, Int. J. Control, 37 (1983), 909–927 | DOI

[21] Sabery A., Sannuti P., “Cheap and singular controls for linear quadratic regulators”, IEEE Trans. Automat. Control, 32 (1987), 208–219 | DOI | MR

[22] Speyer J.L., Jacobson D.H., “Necessary and sufficient conditions for optimality for singular control problems; a transformation approach”, J. Math. Anal. Appl., 33:1 (1971), 163–187 | DOI | MR