Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2021_315_a4, author = {A. O. Belyakov and A. A. Davydov}, title = {Optimal {Cyclic} {Harvesting} of a {Distributed} {Renewable} {Resource} with {Diffusion}}, journal = {Informatics and Automation}, pages = {64--73}, publisher = {mathdoc}, volume = {315}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_315_a4/} }
TY - JOUR AU - A. O. Belyakov AU - A. A. Davydov TI - Optimal Cyclic Harvesting of a Distributed Renewable Resource with Diffusion JO - Informatics and Automation PY - 2021 SP - 64 EP - 73 VL - 315 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2021_315_a4/ LA - ru ID - TRSPY_2021_315_a4 ER -
A. O. Belyakov; A. A. Davydov. Optimal Cyclic Harvesting of a Distributed Renewable Resource with Diffusion. Informatics and Automation, Optimal Control and Differential Games, Tome 315 (2021), pp. 64-73. http://geodesic.mathdoc.fr/item/TRSPY_2021_315_a4/
[1] V. I. Arnol'd, “Convex hulls and increasing the output of systems under a pulsating load”, Sib. Math. J., 28:4 (1987), 540–542 | DOI | MR
[2] V. I. Arnold, “Optimization in mean and phase transitions in controlled dynamical systems”, Funct. Anal. Appl., 36:2 (2002), 83–92 | DOI | MR | MR
[3] S. M. Aseev and A. V. Kryazhimskii, “The Pontryagin maximum principle and optimal economic growth problems”, Proc. Steklov Inst. Math., 257 (2007), 1–255 | DOI | MR
[4] S. M. Aseev and V. M. Veliov, “Another view of the maximum principle for infinite-horizon optimal control problems in economics”, Russ. Math. Surv., 74:6 (2019), 963–1011 | DOI | MR
[5] Behringer S., Upmann T., “Optimal harvesting of a spatial renewable resource”, J. Econ. Dyn. Control, 42 (2014), 105–120 | DOI | MR
[6] A. O. Belyakov and A. A. Davydov, “Efficiency optimization for the cyclic use of a renewable resource”, Proc. Steklov Inst. Math., 299:Suppl. 1 (2017), S14–S21
[7] Belyakov A.O., Davydov A.A., Veliov V.M., “Optimal cyclic exploitation of renewable resources”, J. Dyn. Control Syst., 21:3 (2015), 475–494 | DOI | MR
[8] Berestycki H., Hamel F., Roques L., “Analysis of the periodically fragmented environment model. I: Species persistence”, J. Math. Biol., 51:1 (2005), 75–113 | DOI | MR
[9] J. Bregnballe, A Guide to Recirculation Aquaculture: An Introduction to the New Environmentally Friendly and Highly Productive Closed Fish Farming Systems, FAO EUROFISH, Copenhagen, 2010
[10] Carvalho P.G. et al., “Optimized fishing through periodically harvested closures”, J. Appl. Ecol., 56:8 (2019), 1927–1936 | DOI
[11] Cohen P.J., Foale S.J., “Sustaining small-scale fisheries with periodically harvested marine reserves”, Marine Policy, 37 (2013), 278–287 | DOI
[12] A. A. Davydov, “Generic profit singularities in Arnold's model of cyclic processes”, Proc. Steklov Inst. Math., 250 (2005), 70–84
[13] A. A. Davydov, “Existence of optimal stationary states of exploited populations with diffusion”, Proc. Steklov Inst. Math., 310 (2020), 124–130 | DOI
[14] Davydov A., “Optimal steady state of distributed population in periodic environment”, AIP Conf. Proc., 2333 (2021), 120007 | DOI
[15] Davydov A.A., Melnik D.A., “Optimalnye sostoyaniya raspredelennykh ekspluatiruemykh populyatsii s periodicheskim impulsnym otborom”, Tr. In-ta matematiki i mekhaniki UrO RAN, 27:2 (2021), 99–107 | MR
[16] A. A. Davydov and H. Mena Matos, “Generic phase transitions and profit singularities in Arnol'd's model”, Sb. Math., 198:1 (2007), 17–37 | DOI | MR
[17] Davydov A.A., Mena-Matos H., Moreira C.S., “Generic profit singularities in time averaged optimization for phase transitions in polydynamical systems”, J. Math. Anal. Appl., 424:1 (2015), 704–726 | DOI | MR
[18] Fisher R.A., “The wave of advance of advantageous genes”, Ann. Eugenics, 7:4 (1937), 355–369 | DOI
[19] Kolmogorov A.N., Petrovskii I.G., Piskunov N.S., “Issledovanie uravneniya diffuzii, soedinennoi s vozrastaniem kolichestva veschestva, i ego primenenie k odnoi biologicheskoi probleme”, Byul. MGU. Matematika i mekhanika, 1:6 (1937), 1–26
[20] Koopman B.O., “The theory of search. III: The optimum distribution of searching effort”, Oper. Res., 5:5 (1957), 613–626 | DOI
[21] O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural'tseva, Linear and Quasi-linear Equations of Parabolic Type, Am. Math. Soc., Providence, RI, 1968
[22] Liu P., Shi J., Wang Y., “Periodic solutions of a logistic type population model with harvesting”, J. Math. Anal. Appl., 369:2 (2010), 730–735 | DOI | MR
[23] Maurer H., Büskens Ch., Feichtinger G., “Solution techniques for periodic control problems: A case study in production planning”, Optim. Control Appl. Methods, 19:3 (1998), 185–203 | 3.0.CO;2-E class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[24] Mena-Matos H., “Generic profit singularities in time averaged optimization. The case of a control space with a regular boundary”, J. Dyn. Control Syst., 16:1 (2010), 101–120 | DOI | MR
[25] Mena-Matos H., Moreira C., “Generic singularities of the optimal averaged profit among stationary strategies”, J. Dyn. Control Syst., 13:4 (2007), 541–562 | DOI | MR
[26] Tsirlin A.M., Metody usrednennoi optimizatsii i ikh prilozheniya, Nauka, M., 1997
[27] Undersander D.J., Albert B., Porter P., Crossley A., Pastures for profit: A hands on guide to rotational grazing, Publ. A3529, Univ. Wisconsin Coop. Ext., Madison, WI, 1993
[28] Zhikov V.V., “Matematicheskie problemy teorii poiska”, Sbornik nauchnykh trudov Vladimirskogo vechernego politekhnicheskogo instituta. Vyp. 4: Radioelektronika, avtomatika, elektrotekhnika, priborostroenie, matematika, Vyssh. shk., M., 1968, 263–270