Guidance--Evasion Differential Game: Alternative Solvability and Relaxations of the Guidance Problem
Informatics and Automation, Optimal Control and Differential Games, Tome 315 (2021), pp. 284-303.

Voir la notice de l'article provenant de la source Math-Net.Ru

A guidance–evasion differential game on a finite time interval is studied. Two sets are assumed to be defined in the position space: a target set (TS) of a player who tries to guarantee the guidance (approach), and a set defining state constraints (SCs). Conditions for alternative solvability are proposed: it is shown that a certain analog of N. N. Krasovskii and A. I. Subbotin's alternative theorem holds provided that the TS is closed in the ordinary sense and the set defining SCs has closed sections. In the case when both these sets are closed, statements with relaxed termination conditions of the guidance game are investigated. In this case, different degrees of relaxation of the requirements concerning the guidance to the TS and the fulfillment of the SCs are considered. A position function is constructed whose values are the minimum sizes of the neighborhoods of the above sets for which the player interested in guidance guarantees its implementation. The construction is based on a variant of the programmed iteration method.
@article{TRSPY_2021_315_a20,
     author = {A. G. Chentsov},
     title = {Guidance--Evasion {Differential} {Game:} {Alternative} {Solvability} and {Relaxations} of the {Guidance} {Problem}},
     journal = {Informatics and Automation},
     pages = {284--303},
     publisher = {mathdoc},
     volume = {315},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_315_a20/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - Guidance--Evasion Differential Game: Alternative Solvability and Relaxations of the Guidance Problem
JO  - Informatics and Automation
PY  - 2021
SP  - 284
EP  - 303
VL  - 315
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2021_315_a20/
LA  - ru
ID  - TRSPY_2021_315_a20
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T Guidance--Evasion Differential Game: Alternative Solvability and Relaxations of the Guidance Problem
%J Informatics and Automation
%D 2021
%P 284-303
%V 315
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2021_315_a20/
%G ru
%F TRSPY_2021_315_a20
A. G. Chentsov. Guidance--Evasion Differential Game: Alternative Solvability and Relaxations of the Guidance Problem. Informatics and Automation, Optimal Control and Differential Games, Tome 315 (2021), pp. 284-303. http://geodesic.mathdoc.fr/item/TRSPY_2021_315_a20/

[1] P. Billingsley, Convergence of Probability Measures, J. Wiley Sons, New York, 1968

[2] A. G. Chentsov, “On the structure of a game problem of convergence”, Sov. Math., Dokl., 16 (1976), 1404–1408 | MR

[3] A. G. Chentsov, “On a game problem of guidance”, Sov. Math., Dokl., 17 (1976), 73–77 | MR

[4] A. G. Čencov, “On a game problem of converging at a given instant of time”, Math. USSR, Sb., 28:3 (1976), 353–376 | DOI | MR

[5] A. G. Čencov, “On the game problem of convergence at a given moment of time”, Math. USSR, Izv., 12:2 (1978), 426–437 | DOI | MR

[6] A. G. Chentsov, The programmed iteration method for a guidance–evasion differential game, Available from VINITI, No. 1933-79, Ural Polytech. Inst., Sverdlovsk, 1979

[7] A. G. Chentsov, “An alternative in the class of quasistrategies for approach–evasion games”, Diff. Eqns., 16 (1981), 1167–1171 | MR

[8] A. G. Chentsov, “The program iteration method in a game problem of guidance”, Proc. Steklov Inst. Math., 297:Suppl. 1 (2017), S43–S61

[9] Chentsov A.G., “Iteratsii stabilnosti i zadacha ukloneniya s ogranicheniem na chislo pereklyuchenii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 23:2 (2017), 285–302 | MR

[10] Chentsov A.G., “Iteratsii stabilnosti i zadacha ukloneniya s ogranicheniem na chislo pereklyuchenii formiruemogo upravleniya”, Izv. In-ta matematiki i informatiki UdGU, 49 (2017), 17–54

[11] A. G. Chentsov and D. M. Khachay, “Relaxation of the pursuit–evasion differential game and iterative methods”, Proc. Steklov Inst. Math., 308:Suppl. 1 (2020), S35–S57

[12] Chentsov A., Khachay D., “Program iterations method and relaxation of a pursuit–evasion differential game”, Advanced control techniques in complex engineering systems: Theory and applications, Stud. Syst. Decis. Control, 203, Springer, Cham, 2019, 129–161 | DOI

[13] S. V. Chistiakov, “On solving pursuit game problems”, J. Appl. Math. Mech., 41:5 (1977), 845–852 | DOI | MR

[14] J. Dieudonné, Foundations of Modern Analysis, Academic, New York, 1960

[15] N. Dunford and J. T. Schwartz, Linear Operators, Part 1: General Theory, Interscience, New York, 1958

[16] Elliott R.J., Kalton N.J., The existence of value in differential games, Mem. AMS, 126, Amer. Math. Soc., Providence, RI, 1972

[17] R. Engelking, General Topology, Heldermann Verl., Berlin, 1989

[18] Fleming W.H., “The convergence problem for differential games”, J. Math. Anal. Appl., 3:1 (1961), 102–116 | DOI | MR

[19] Friedman A., Differential games, Wiley Intersci., New York, 1971

[20] R. V. Gamkrelidze, Principles of Optimal Control Theory, Plenum, New York, 1978

[21] R. Isaacs, Differential Games: A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization, J. Wiley Sons, New York, 1965

[22] Krasovskii N.N., Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970

[23] Krasovskii N.N., “Differentsialnaya igra sblizheniya–ukloneniya. I”, Izv. AN SSSR. Ser. tekhn. kibern., 1973, no. 2, 3–18

[24] Krasovskii N.N., “Differentsialnaya igra sblizheniya–ukloneniya. II”, Izv. AN SSSR. Ser. tekhn. kibern., 1973, no. 3, 22–42

[25] Krasovskii N.N., Upravlenie dinamicheskoi sistemoi: Zadacha o minimume garantirovannogo rezultata, Nauka, M., 1985

[26] N. N. Krasovskii and A. I. Subbotin, “An alternative for the game problem of convergence”, J. Appl. Math. Mech., 34:6 (1970), 948–965 | DOI | MR

[27] N. N. Krasovskii and A. I. Subbotin, Game-Theoretical Control Problems, Springer, New York, 1988

[28] A. V. Kryazhimskii, “On the theory of positional differential games of convergence–evasion”, Sov. Math., Dokl., 19 (1978), 408–412 | MR

[29] K. Kuratowski and A. Mostowski, Set Theory, North-Holland, Amsterdam, 1968

[30] J. Neveu, Bases mathématiques du calcul des probabilités, Masson et Cie, Paris, 1964

[31] L. S. Pontryagin, “Linear differential games. I”, Sov. Math., Dokl., 8 (1967), 769–771

[32] L. S. Pontryagin, “Linear differential games. II”, Sov. Math., Dokl., 8 (1967), 910–912

[33] B. N. Pshenichnyi, “The structure of differential games”, Sov. Math., Dokl., 10 (1969), 70–72

[34] Roxin E., “Axiomatic approach in differential games”, J. Optim. Theory Appl., 3:3 (1969), 153–163 | DOI | MR

[35] Ryll-Nardzewski C., “A theory of pursuit and evasion”, Advances in game theory, Ann. Math. Stud., 52, Princeton Univ. Press, Princeton, NJ, 1964, 113–126

[36] A. I. Subbotin, “Extremal strategies in differential games with perfect memory”, Sov. Math., Dokl., 13 (1972), 1263–1267

[37] Subbotin A.I., Chentsov A.G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981

[38] V. I. Ukhobotov, “Construction of a stable bridge for a class of linear games”, J. Appl. Math. Mech., 41:2 (1977), 350–354 | DOI | MR

[39] Varaiya P., Lin J., “Existence of saddle points in differential games”, SIAM J. Control, 7:1 (1969), 141–157 | DOI

[40] J. Warga, Optimal Control of Differential and Functional Equations, Academic, New York, 1972