Implicit Function Theorem in a Neighborhood of an Abnormal Point
Informatics and Automation, Optimal Control and Differential Games, Tome 315 (2021), pp. 26-33
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the existence of an implicit function, defined by an equation $G(x,\sigma )=0$, in a neighborhood of an abnormal point $(x_0,\sigma _0)$. We prove that if some $\lambda $-truncation of the mapping $F(x) = G(x,\sigma _0)$ is regular in a certain direction, then the sought implicit function exists.
@article{TRSPY_2021_315_a2,
author = {A. V. Arutyunov and K. I. Salikhova},
title = {Implicit {Function} {Theorem} in a {Neighborhood} of an {Abnormal} {Point}},
journal = {Informatics and Automation},
pages = {26--33},
publisher = {mathdoc},
volume = {315},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_315_a2/}
}
A. V. Arutyunov; K. I. Salikhova. Implicit Function Theorem in a Neighborhood of an Abnormal Point. Informatics and Automation, Optimal Control and Differential Games, Tome 315 (2021), pp. 26-33. http://geodesic.mathdoc.fr/item/TRSPY_2021_315_a2/