Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2021_315_a18, author = {V. N. Ushakov and A. A. Ershov and A. R. Matviychuk}, title = {On {Estimating} the {Degree} of {Nonconvexity} of {Reachable} {Sets} of {Control} {Systems}}, journal = {Informatics and Automation}, pages = {261--270}, publisher = {mathdoc}, volume = {315}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_315_a18/} }
TY - JOUR AU - V. N. Ushakov AU - A. A. Ershov AU - A. R. Matviychuk TI - On Estimating the Degree of Nonconvexity of Reachable Sets of Control Systems JO - Informatics and Automation PY - 2021 SP - 261 EP - 270 VL - 315 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2021_315_a18/ LA - ru ID - TRSPY_2021_315_a18 ER -
%0 Journal Article %A V. N. Ushakov %A A. A. Ershov %A A. R. Matviychuk %T On Estimating the Degree of Nonconvexity of Reachable Sets of Control Systems %J Informatics and Automation %D 2021 %P 261-270 %V 315 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2021_315_a18/ %G ru %F TRSPY_2021_315_a18
V. N. Ushakov; A. A. Ershov; A. R. Matviychuk. On Estimating the Degree of Nonconvexity of Reachable Sets of Control Systems. Informatics and Automation, Optimal Control and Differential Games, Tome 315 (2021), pp. 261-270. http://geodesic.mathdoc.fr/item/TRSPY_2021_315_a18/
[1] V. G. Boltyanskii and V. L. Dol'nikov, “Jung's theorem and $H$-convexity”, Dokl. Math., 71:2 (2005), 245–249 | MR
[2] Ershov A.A., Pershakov M.V., “O sootnoshenii alfa-mnozhestv s drugimi obobscheniyami”, VI Inform. shk. molodogo uchenogo: Sb. nauch. tr., UrO RAN, Ekaterinburg, 2018, 143–150
[3] Garkavi A.L., “O chebyshevskom tsentre i vypukloi obolochke mnozhestva”, UMN, 19:6 (1964), 139–145 | MR
[4] P. M. Gruber and C. G. Lekkerkerker, Geometry of Numbers, North-Holland, Amsterdam, 1987
[5] Ivanov G.E., Slabo vypuklye mnozhestva i funktsii: Teoriya i prilozheniya, Fizmatlit, M., 2006
[6] Jung H., “Ueber die kleinste Kugel, die eine räumliche Figur einschliesst”, J. reine angew. Math., 123 (1901), 241–257 | MR
[7] Michael E., “Paraconvex sets”, Math. Scand., 7 (1959), 372–376 | DOI | MR
[8] Ngai H.V., Penot J.-P., “Paraconvex functions and paraconvex sets”, Stud. math., 184:1 (2008), 1–29 | DOI
[9] Polovinkin E.S., Balashov M.V., Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2007
[10] P. V. Semenov, “Functionally paraconvex sets”, Math. Notes, 54:6 (1993), 1236–1240 | DOI | MR
[11] V. N. Ushakov and A. A. Ershov, “Estimation of the growth of the degree of nonconvexity of reachable sets in terms of $\alpha $-sets”, Dokl. Math., 102:3 (2020), 532–537 | DOI
[12] Ushakov V.N., Uspenskii A.A., “$\alpha $-Mnozhestva v konechnomernykh evklidovykh prostranstvakh i ikh svoistva”, Vestn. Udm. un-ta. Matematika. Mekhanika. Kompyut. nauki, 26:1 (2016), 95–120 | MR
[13] Ushakov V.N., Uspenskii A.A., Ershov A.A., “Alfa-mnozhestva v konechnomernykh evklidovykh prostranstvakh i ikh prilozheniya v teorii upravleniya”, Vestn. S.-Peterb. un-ta. Ser. 10: Prikl. matematika. Informatika. Prots. upr., 14:3 (2018), 261–272 | MR
[14] Uspenskii A.A., Ushakov V.N., Fomin A.N., $\alpha $-Mnozhestva i ikh svoistva, Dep. v VINITI, No543-V2004, IMM UrO RAN, Ekaterinburg, 2004
[15] Zelinskii Yu.B., Vypuklost: Izbrannye glavy, In-t mat. NAN Ukr., Kiïv, 2012