Carnot Algebras and Sub-Riemannian Structures with Growth Vector (2,$\,$3,$\,$5,$\,$6)
Informatics and Automation, Optimal Control and Differential Games, Tome 315 (2021), pp. 237-246

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe all Carnot algebras with growth vector $(2,3,5,6)$, their normal forms, an invariant that distinguishes them, and a basis change that reduces such an algebra to a normal form. For every normal form, we calculate the Casimir functions and symplectic foliations on the Lie coalgebra. We describe the invariant and the normal forms of left-invariant $(2,3,5,6)$-distributions. We also obtain a classification of all left-invariant sub-Riemannian structures on $(2,3,5,6)$-Carnot groups up to isometry and present models of these structures.
Keywords: sub-Riemannian geometry, Carnot algebras, Carnot groups, left-invariant sub-Riemannian structures.
@article{TRSPY_2021_315_a16,
     author = {Yu. L. Sachkov and E. F. Sachkova},
     title = {Carnot {Algebras} and {Sub-Riemannian} {Structures} with {Growth} {Vector} (2,$\,$3,$\,$5,$\,$6)},
     journal = {Informatics and Automation},
     pages = {237--246},
     publisher = {mathdoc},
     volume = {315},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_315_a16/}
}
TY  - JOUR
AU  - Yu. L. Sachkov
AU  - E. F. Sachkova
TI  - Carnot Algebras and Sub-Riemannian Structures with Growth Vector (2,$\,$3,$\,$5,$\,$6)
JO  - Informatics and Automation
PY  - 2021
SP  - 237
EP  - 246
VL  - 315
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2021_315_a16/
LA  - ru
ID  - TRSPY_2021_315_a16
ER  - 
%0 Journal Article
%A Yu. L. Sachkov
%A E. F. Sachkova
%T Carnot Algebras and Sub-Riemannian Structures with Growth Vector (2,$\,$3,$\,$5,$\,$6)
%J Informatics and Automation
%D 2021
%P 237-246
%V 315
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2021_315_a16/
%G ru
%F TRSPY_2021_315_a16
Yu. L. Sachkov; E. F. Sachkova. Carnot Algebras and Sub-Riemannian Structures with Growth Vector (2,$\,$3,$\,$5,$\,$6). Informatics and Automation, Optimal Control and Differential Games, Tome 315 (2021), pp. 237-246. http://geodesic.mathdoc.fr/item/TRSPY_2021_315_a16/