Carnot Algebras and Sub-Riemannian Structures with Growth Vector (2,$\,$3,$\,$5,$\,$6)
Informatics and Automation, Optimal Control and Differential Games, Tome 315 (2021), pp. 237-246
Voir la notice de l'article provenant de la source Math-Net.Ru
We describe all Carnot algebras with growth vector $(2,3,5,6)$, their normal forms, an invariant that distinguishes them, and a basis change that reduces such an algebra to a normal form. For every normal form, we calculate the Casimir functions and symplectic foliations on the Lie coalgebra. We describe the invariant and the normal forms of left-invariant $(2,3,5,6)$-distributions. We also obtain a classification of all left-invariant sub-Riemannian structures on $(2,3,5,6)$-Carnot groups up to isometry and present models of these structures.
Keywords:
sub-Riemannian geometry, Carnot algebras, Carnot groups, left-invariant sub-Riemannian structures.
@article{TRSPY_2021_315_a16,
author = {Yu. L. Sachkov and E. F. Sachkova},
title = {Carnot {Algebras} and {Sub-Riemannian} {Structures} with {Growth} {Vector} (2,$\,$3,$\,$5,$\,$6)},
journal = {Informatics and Automation},
pages = {237--246},
publisher = {mathdoc},
volume = {315},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_315_a16/}
}
TY - JOUR AU - Yu. L. Sachkov AU - E. F. Sachkova TI - Carnot Algebras and Sub-Riemannian Structures with Growth Vector (2,$\,$3,$\,$5,$\,$6) JO - Informatics and Automation PY - 2021 SP - 237 EP - 246 VL - 315 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2021_315_a16/ LA - ru ID - TRSPY_2021_315_a16 ER -
Yu. L. Sachkov; E. F. Sachkova. Carnot Algebras and Sub-Riemannian Structures with Growth Vector (2,$\,$3,$\,$5,$\,$6). Informatics and Automation, Optimal Control and Differential Games, Tome 315 (2021), pp. 237-246. http://geodesic.mathdoc.fr/item/TRSPY_2021_315_a16/