Carnot Algebras and Sub-Riemannian Structures with Growth Vector (2,$\,$3,$\,$5,$\,$6)
Informatics and Automation, Optimal Control and Differential Games, Tome 315 (2021), pp. 237-246.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe all Carnot algebras with growth vector $(2,3,5,6)$, their normal forms, an invariant that distinguishes them, and a basis change that reduces such an algebra to a normal form. For every normal form, we calculate the Casimir functions and symplectic foliations on the Lie coalgebra. We describe the invariant and the normal forms of left-invariant $(2,3,5,6)$-distributions. We also obtain a classification of all left-invariant sub-Riemannian structures on $(2,3,5,6)$-Carnot groups up to isometry and present models of these structures.
Keywords: sub-Riemannian geometry, Carnot algebras, Carnot groups, left-invariant sub-Riemannian structures.
@article{TRSPY_2021_315_a16,
     author = {Yu. L. Sachkov and E. F. Sachkova},
     title = {Carnot {Algebras} and {Sub-Riemannian} {Structures} with {Growth} {Vector} (2,$\,$3,$\,$5,$\,$6)},
     journal = {Informatics and Automation},
     pages = {237--246},
     publisher = {mathdoc},
     volume = {315},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_315_a16/}
}
TY  - JOUR
AU  - Yu. L. Sachkov
AU  - E. F. Sachkova
TI  - Carnot Algebras and Sub-Riemannian Structures with Growth Vector (2,$\,$3,$\,$5,$\,$6)
JO  - Informatics and Automation
PY  - 2021
SP  - 237
EP  - 246
VL  - 315
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2021_315_a16/
LA  - ru
ID  - TRSPY_2021_315_a16
ER  - 
%0 Journal Article
%A Yu. L. Sachkov
%A E. F. Sachkova
%T Carnot Algebras and Sub-Riemannian Structures with Growth Vector (2,$\,$3,$\,$5,$\,$6)
%J Informatics and Automation
%D 2021
%P 237-246
%V 315
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2021_315_a16/
%G ru
%F TRSPY_2021_315_a16
Yu. L. Sachkov; E. F. Sachkova. Carnot Algebras and Sub-Riemannian Structures with Growth Vector (2,$\,$3,$\,$5,$\,$6). Informatics and Automation, Optimal Control and Differential Games, Tome 315 (2021), pp. 237-246. http://geodesic.mathdoc.fr/item/TRSPY_2021_315_a16/

[1] Agrachev A., Barilari D., Boscain U., A comprehensive introduction to sub-Riemannian geometry: From the Hamiltonian viewpoint, Cambridge Stud. Adv. Math., 181, Cambridge Univ. Press, Cambridge, 2020

[2] Ardentov A.A., Sachkov Yu.L., “Maxwell strata and cut locus in the sub-Riemannian problem on the Engel group”, Regul. Chaotic Dyn., 22:8 (2017), 909–936 | DOI | MR

[3] V. N. Berestovskii and I. A. Zubareva, “Shapes of spheres of special nonholonomic left-invariant intrinsic metrics on some Lie groups”, Sib. Math. J., 42:4 (2001), 613–628 | DOI | MR

[4] Boizot N., Gauthier J.-P., “On the motion planning of the ball with a trailer”, Math. Control Relat. Fields, 3:3 (2013), 269–286 | DOI | MR

[5] Boscain U., Rossi F., “Invariant Carnot–Carathéodory metrics on $S^3$, $SO(3)$, $SL(2)$, and lens spaces”, SIAM J. Control Optim., 47:4 (2008), 1851–1878 | DOI | MR

[6] Butt Y.A., Sachkov Yu.L., Bhatti A.I., “Cut locus and optimal synthesis in sub-Riemannian problem on the Lie group $\mathrm {SH}(2)$”, J. Dyn. Control Syst., 23:1 (2017), 155–195 | DOI | MR

[7] Gong M.-P., Classification of nilpotent Lie algebras of dimension 7 (over algebraically closed fields and $\mathbb R$), PhD Thesis, Univ. Waterloo, Waterloo, 1998

[8] Kirillov A.A., Lectures on the orbit method, Grad. Stud. Math., 64, Amer. Math. Soc., Providence, RI, 2004 | DOI

[9] Kivioja V., Le Donne E., “Isometries of nilpotent metric groups”, J. Éc. polytech. Math., 4 (2017), 473–482 | DOI | MR

[10] Le Donne E., Tripaldi F., A cornucopia of Carnot groups in low dimensions, E-print, 2020, arXiv: 2008.12356 [math.DG]

[11] L. V. Lokutsievskiy and Yu. L. Sachkov, “Liouville integrability of sub-Riemannian problems on Carnot groups of step 4 or greater”, Sb. Math., 209:5 (2018), 672–713 | DOI | MR

[12] Yu. L. Sachkov, “Complete description of the Maxwell strata in the generalized Dido problem”, Sb. Math., 197:6 (2006), 901–950 | DOI | MR

[13] Sachkov Yu.L., “Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane”, ESAIM: Control Optim. Calc. Var., 17:2 (2011), 293–321 | DOI | MR

[14] Yu. L. Sachkov and E. F. Sachkova, “Degenerate abnormal trajectories in a sub-Riemannian problem with growth vector $(2,3,5,8)$”, Diff. Eqns., 53:3 (2017), 352–365

[15] Yu. L. Sachkov and E. F. Sachkova, “The structure of abnormal extremals in a sub-Riemannian problem with growth vector $(2,3,5,8)$”, Sb. Math., 211:10 (2020), 1460–1485 | DOI | MR

[16] A. M. Vershik and V. Ya. Gershkovich, “Nonholonomic dynamical systems, geometry of distributions and variational problems”, Dynamical Systems VII: Integrable Systems. Nonholonomic Dynamical Systems, Encycl. Math. Sci., 16, Springer, Berlin, 1994, 1–81 | MR