Consecutive Primes in Short Intervals
Informatics and Automation, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 152-210

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a lower bound for $\#\{x/2$, $p_{n+m} - p_n\leq y\}$, where $p_n$ is the $n$th prime.
Mots-clés : Euler's totient function
Keywords: sieve methods, distribution of prime numbers.
@article{TRSPY_2021_314_a8,
     author = {Artyom O. Radomskii},
     title = {Consecutive {Primes} in {Short} {Intervals}},
     journal = {Informatics and Automation},
     pages = {152--210},
     publisher = {mathdoc},
     volume = {314},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_314_a8/}
}
TY  - JOUR
AU  - Artyom O. Radomskii
TI  - Consecutive Primes in Short Intervals
JO  - Informatics and Automation
PY  - 2021
SP  - 152
EP  - 210
VL  - 314
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2021_314_a8/
LA  - ru
ID  - TRSPY_2021_314_a8
ER  - 
%0 Journal Article
%A Artyom O. Radomskii
%T Consecutive Primes in Short Intervals
%J Informatics and Automation
%D 2021
%P 152-210
%V 314
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2021_314_a8/
%G ru
%F TRSPY_2021_314_a8
Artyom O. Radomskii. Consecutive Primes in Short Intervals. Informatics and Automation, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 152-210. http://geodesic.mathdoc.fr/item/TRSPY_2021_314_a8/