Consecutive Primes in Short Intervals
Informatics and Automation, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 152-210
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain a lower bound for $\#\{x/2$, $p_{n+m} - p_n\leq y\}$, where $p_n$ is the $n$th prime.
Mots-clés :
Euler's totient function
Keywords: sieve methods, distribution of prime numbers.
Keywords: sieve methods, distribution of prime numbers.
@article{TRSPY_2021_314_a8,
author = {Artyom O. Radomskii},
title = {Consecutive {Primes} in {Short} {Intervals}},
journal = {Informatics and Automation},
pages = {152--210},
publisher = {mathdoc},
volume = {314},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_314_a8/}
}
Artyom O. Radomskii. Consecutive Primes in Short Intervals. Informatics and Automation, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 152-210. http://geodesic.mathdoc.fr/item/TRSPY_2021_314_a8/