On Irregularity of Finite Sequences
Informatics and Automation, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 97-102
Voir la notice de l'article provenant de la source Math-Net.Ru
A sequence $(x_1,x_2,\dots ,x_{N+d})$ of numbers in $[0,1)$ is said to be $N$-regular with at most $d$ irregularities if for every $n=1,\dots ,N$ each of the intervals $[0,1),[1,2),\dots ,[n-1,n)$ contains at least one element of the sequence $(nx_1,nx_2,\dots ,nx_{n+d})$. The maximum $N$ for which there exists an $N$-regular sequence with at most $d$ irregularities is denoted by $s(d)$. We show that $s(d)\ge 2d$ for any positive integer $d$ and that $s(d)200d$ for all sufficiently large $d$.
Keywords:
distribution of sequences of real numbers.
@article{TRSPY_2021_314_a4,
author = {S. V. Konyagin},
title = {On {Irregularity} of {Finite} {Sequences}},
journal = {Informatics and Automation},
pages = {97--102},
publisher = {mathdoc},
volume = {314},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_314_a4/}
}
S. V. Konyagin. On Irregularity of Finite Sequences. Informatics and Automation, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 97-102. http://geodesic.mathdoc.fr/item/TRSPY_2021_314_a4/