Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2021_313_a21, author = {A. S. Trushechkin}, title = {Derivation of the {Redfield} {Quantum} {Master} {Equation} and {Corrections} to {It} by the {Bogoliubov} {Method}}, journal = {Informatics and Automation}, pages = {263--274}, publisher = {mathdoc}, volume = {313}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_313_a21/} }
TY - JOUR AU - A. S. Trushechkin TI - Derivation of the Redfield Quantum Master Equation and Corrections to It by the Bogoliubov Method JO - Informatics and Automation PY - 2021 SP - 263 EP - 274 VL - 313 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2021_313_a21/ LA - ru ID - TRSPY_2021_313_a21 ER -
A. S. Trushechkin. Derivation of the Redfield Quantum Master Equation and Corrections to It by the Bogoliubov Method. Informatics and Automation, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 263-274. http://geodesic.mathdoc.fr/item/TRSPY_2021_313_a21/
[1] Accardi L., Lu Y.G., Volovich I., Quantum theory and its stochastic limit, Springer, Berlin, 2002 | MR | Zbl
[2] R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics, J. Wiley Sons, New York, 1975 | MR | Zbl
[3] N. N. Bogoliubov, Problems of a Dynamical Theory in Statistical Physics, North-Holland, Amsterdam, 1962 | MR | MR
[4] Bogolyubov N.N., Gurov K.P., “Kineticheskie uravneniya v kvantovoi mekhanike”, ZhETF, 17:7 (1947), 614–628
[5] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, Oxford Univ. Press, Oxford, 2002 | MR | Zbl
[6] Chruściński D., Pascazio S., “A brief history of the GKLS equation”, Open Syst. Inf. Dyn., 24:3 (2017), 1740001 | DOI | MR | Zbl
[7] Davies E.B., “Markovian master equations”, Commun. Math. Phys., 39 (1974), 91–110 | DOI | MR | Zbl
[8] Dümcke R., “Convergence of multitime correlation functions in the weak and singular coupling limits”, J. Math. Phys., 24:2 (1983), 311–315 | DOI | MR
[9] Garraway B.M., “Nonperturbative decay of an atomic system in a cavity”, Phys. Rev. A, 55:3 (1997), 2290–2303 | DOI | MR
[10] Garraway B.M., “Decay of an atom coupled strongly to a reservoir”, Phys. Rev. A, 55:6 (1997), 4636–4639 | DOI
[11] A. S. Holevo, Quantum Systems, Channels, Information: A Mathematical Introduction, de Gruyter Stud. Math. Phys., 16, de Gruyter, Berlin, 2012 | MR | Zbl
[12] Jang S., Cao J., Silbey R.J., “Fourth-order quantum master equation and its Markovian bath limit”, J. Chem. Phys., 116:7 (2002), 2705–2717 | DOI
[13] Lax M., “Formal theory of quantum fluctuations from a driven state”, Phys. Rev., 129:5 (1963), 2342–2348 | DOI | MR
[14] Li L., Hall M.J.W., Wiseman H.M., “Concepts of quantum non-Markovianity: A hierarchy”, Phys. Rep., 759 (2018), 1–51 | DOI | MR | Zbl
[15] Lo Gullo N., Sinayskiy I., Busch Th., Petruccione F., Non-Markovianity criteria for open system dynamics, E-print, 2014, arXiv: 1401.1126 [quant-ph]
[16] Ohya M., Volovich I., Mathematical foundations of quantum information and computation and its applications to nano- and bio-systems, Springer, New York, 2011 | MR | Zbl
[17] Pechen A.N., Volovich I.V., “Quantum multipole noise and generalized quantum stochastic equations”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 5:4 (2002), 441–464 | DOI | MR | Zbl
[18] Redfield A.G., “The theory of relaxation processes”, Adv. Magn. Opt. Reson., 1 (1965), 1–32 | DOI
[19] Richter M., Mukamel S., “Relaxation processes in systems strongly coupled to a harmonic bath”, J. Mod. Opt., 57:19 (2010), 2004–2008 | DOI | Zbl
[20] Rivas Á., Huelga S.F., Open quantum systems: An introduction, Springer, Heidelberg, 2012 | MR | Zbl
[21] Spohn H., “Kinetic equations from Hamiltonian dynamics: Markovian limits”, Rev. Mod. Phys., 52:3 (1980), 569–615 | DOI | MR
[22] Spohn H., Large scale dynamics of interacting particles, Springer, Berlin, 1991 | Zbl
[23] Suárez A., Silbey R., Oppenheim I., “Memory effects in the relaxation of quantum open systems”, J. Chem. Phys., 97:7 (1992), 5101–5107 | DOI
[24] A. E. Teretenkov, “Pseudomode approach and vibronic non-Markovian phenomena in light-harvesting complexes”, Proc. Steklov Inst. Math., 306 (2019), 242–256 | DOI | MR | Zbl
[25] Teretenkov A.E., “Non-Markovian evolution of multi-level system interacting with several reservoirs. Exact and approximate”, Lobachevskii J. Math., 40:10 (2019), 1587–1605 | DOI | MR | Zbl
[26] Teretenkov A.E., Non-perturbative effects in corrections to quantum master equations arising in Bogolubov–van Hove limit, E-print, 2020, arXiv: 2008.02820 [quant-ph]
[27] A. S. Trushechkin, “Dynamics of reservoir observables within the Zwanzig projection operator method in the theory of open quantum systems”, Proc. Steklov Inst. Math., 306 (2019), 257–270 | DOI | MR | Zbl
[28] Trushechkin A., “Calculation of coherences in Förster and modified Redfield theories of excitation energy transfer”, J. Chem. Phys., 151:7 (2019), 074101 | DOI
[29] Trushechkin A., Unified GKLS quantum master equation beyond the secular approximation, E-print, 2021, arXiv: 2103.12042 [quant-ph] | Zbl
[30] Zwanzig R., “Ensemble method in the theory of irreversibility”, J. Chem. Phys., 33:5 (1960), 1338–1341 | DOI | MR