An Example of Explicit Generators of Local and Nonlocal Quantum Master Equations
Informatics and Automation, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 253-262.

Voir la notice de l'article provenant de la source Math-Net.Ru

A simple example of completely positive dynamics is considered for which both the generator of a nonlocal integro-differential equation leading to such dynamics and the time-local generator can be calculated explicitly. It is demonstrated that introducing a small parameter in this simple example allows one to reproduce some nonperturbative phenomena that occur in more realistic models. In addition, a special case of fermionic dynamics is considered, and it is shown that one can actually find families of moments whose dynamics is linear but satisfies non-Markovian equations.
@article{TRSPY_2021_313_a20,
     author = {A. E. Teretenkov},
     title = {An {Example} of {Explicit} {Generators} of {Local} and {Nonlocal} {Quantum} {Master} {Equations}},
     journal = {Informatics and Automation},
     pages = {253--262},
     publisher = {mathdoc},
     volume = {313},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_313_a20/}
}
TY  - JOUR
AU  - A. E. Teretenkov
TI  - An Example of Explicit Generators of Local and Nonlocal Quantum Master Equations
JO  - Informatics and Automation
PY  - 2021
SP  - 253
EP  - 262
VL  - 313
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2021_313_a20/
LA  - ru
ID  - TRSPY_2021_313_a20
ER  - 
%0 Journal Article
%A A. E. Teretenkov
%T An Example of Explicit Generators of Local and Nonlocal Quantum Master Equations
%J Informatics and Automation
%D 2021
%P 253-262
%V 313
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2021_313_a20/
%G ru
%F TRSPY_2021_313_a20
A. E. Teretenkov. An Example of Explicit Generators of Local and Nonlocal Quantum Master Equations. Informatics and Automation, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 253-262. http://geodesic.mathdoc.fr/item/TRSPY_2021_313_a20/

[1] Accardi L., Lu Y.G., Volovich I., Quantum theory and its stochastic limit, Springer, Berlin, 2002 | MR | Zbl

[2] Argyres P.N., Kelley P.L., “Theory of spin resonance and relaxation”, Phys. Rev., 134:1A (1964), A98–A111 | DOI

[3] Bai K., Peng Z., Luo H.-G., An J.-H., “Retrieving ideal precision in noisy quantum optical metrology”, Phys. Rev. Lett., 123:4 (2019), 040402 | DOI

[4] Matrix Norms and Their Applications, Oper. Theory: Adv. Appl., 36, Birkhäuser, Basel, 1988 | MR | Zbl

[5] N. N. Bogoliubov, Problems of a Dynamical Theory in Statistical Physics, North-Holland, Amsterdam, 1962 | MR | MR

[6] Breuer H.-P., “Non-Markovian generalization of the Lindblad theory of open quantum systems”, Phys. Rev. A, 75:2 (2007), 022103 | DOI | MR

[7] Breuer H.-P., Kappler B., Petruccione F., “Stochastic wave-function method for non-Markovian quantum master equations”, Phys. Rev. A, 59:2 (1999), 1633–1643 | DOI

[8] Breuer H.-P., Laine E.-M., Piilo J., “Measure for the degree of non-Markovian behavior of quantum processes in open systems”, Phys. Rev. Lett., 103:21 (2009), 210401 | DOI | MR

[9] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, Oxford Univ. Press, Oxford, 2002 | MR | Zbl

[10] Burgarth D., Chiribella G., Giovannetti V., Perinotti P., Yuasa K., “Ergodic and mixing quantum channels in finite dimensions”, New J. Phys., 15:7 (2013), 073045 | DOI | MR | Zbl

[11] Burton T.A., Volterra integral and differential equations, Elsevier, Amsterdam, 2005 | MR | Zbl

[12] Chruściński D., “Introduction to non-Markovian evolution of $n$-level quantum systems”, Open quantum systems: A mathematical perspective, ed. by D. Bahns, A. Pohl, I. Witt, Birkhäuser, Cham, 2019, 55–76 | DOI | MR | Zbl

[13] Davies E.B., Quantum theory of open systems, Acad. Press, London, 1976 | MR | Zbl

[14] Filippov S.N., Chruściński D., “Time deformations of master equations”, Phys. Rev. A, 98:2 (2018), 022123 | DOI

[15] Filippov S.N., Glinov A.N., Leppäjärvi L., “Phase covariant qubit dynamics and divisibility”, Lobachevskii J. Math., 41:4 (2020), 617–630 | DOI | MR | Zbl

[16] Gardiner C.W., Zoller P., Quantum noise: A handbook of Markovian and non-Markovian quantum stochastic methods with applications to quantum optics, Springer, Berlin, 2004 | MR | Zbl

[17] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins Univ. Press, Baltimore, MD, 1996 | MR | Zbl

[18] Gorini V., Kossakowski A., Sudarshan E.C.G., “Completely positive dynamical semigroups of $N$-level systems”, J. Math. Phys., 17:5 (1976), 821–825 | DOI | MR | Zbl

[19] Hall M.J.W., Cresser J.D., Li L., Andersson E., “Canonical form of master equations and characterization of non-Markovianity”, Phys. Rev. A, 89:4 (2014), 042120 | DOI

[20] Holevo A.S., Giovannetti V., “Quantum channels and their entropic characteristics”, Rep. Prog. Phys., 75:4 (2012), 046001 | DOI | MR

[21] Jang S., Cao J., Silbey R.J., “Fourth-order quantum master equation and its Markovian bath limit”, J. Chem. Phys., 116:7 (2002), 2705–2717 | DOI

[22] Kolli A., O'Reilly E.J., Scholes G.D., Olaya-Castro A., “The fundamental role of quantized vibrations in coherent light harvesting by cryptophyte algae”, J. Chem. Phys., 137:17 (2012), 174109 | DOI

[23] Kossakowski A., Rebolledo R., “On non-Markovian time evolution in open quantum systems”, Open Syst. Inf. Dyn., 14:3 (2007), 265–274 | DOI | MR | Zbl

[24] Kubo R., “Stochastic Liouville equations”, J. Math. Phys., 4:2 (1963), 174–183 | DOI | MR | Zbl

[25] Li L., Hall M.J.W., Wiseman H.M., “Concepts of quantum non-Markovianity: A hierarchy”, Phys. Rep., 759 (2018), 1–51 | DOI | MR | Zbl

[26] Lindblad G., “On the generators of quantum dynamical semigroups”, Commun. Math. Phys., 48:2 (1976), 119–130 | DOI | MR | Zbl

[27] Lo Gullo N., Sinayskiy I., Busch Th., Petruccione F., Non-Markovianity criteria for open system dynamics, E-print, 2014, arXiv: 1401.1126 [quant-ph]

[28] Luchnikov I.A., Vintskevich S.V., Ouerdane H., Filippov S.N., “Simulation complexity of open quantum dynamics: Connection with tensor networks”, Phys. Rev. Lett., 122:16 (2019), 160401 | DOI

[29] Milz S., Kim M.S., Pollock F.A., Modi K., “Completely positive divisibility does not mean Markovianity”, Phys. Rev. Lett., 123:4 (2019), 040401 | DOI | MR

[30] Mohseni M., Rebentrost P., Lloyd S., Aspuru-Guzik A., “Environment-assisted quantum walks in photosynthetic energy transfer”, J. Chem. Phys., 129:17 (2008), 174106 | DOI

[31] Nakajima S., “On quantum theory of transport phenomena: Steady diffusion”, Prog. Theor. Phys., 20:6 (1958), 948–959 | DOI | MR | Zbl

[32] Iu. A. Nosal' and A. E. Teretenkov, “Exact dynamics of moments and correlation functions for GKSL fermionic equations of Poisson type”, Math. Notes, 108:5–6 (2020), 911–915 | DOI | MR | Zbl

[33] Pechen A.N., Volovich I.V., “Quantum multipole noise and generalized quantum stochastic equations”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 5:4 (2002), 441–464 | DOI | MR | Zbl

[34] Plenio M.B., Almeida J., Huelga S.F., “Origin of long-lived oscillations in 2D-spectra of a quantum vibronic model: Electronic versus vibrational coherence”, J. Chem. Phys., 139:23 (2013), 235102 | DOI

[35] Plenio M.B., Huelga S.F., “Dephasing-assisted transport: Quantum networks and biomolecules”, New J. Phys., 10:11 (2008), 113019 | DOI

[36] Rivas Á., Huelga S.F., Plenio M.B., “Quantum non-Markovianity: Characterization, quantification and detection”, Rep. Prog. Phys., 77:9 (2014), 094001 | DOI | MR

[37] Shibata F., Takahashi Y., Hashitsume N., “A generalized stochastic Liouville equation. Non-Markovian versus memoryless master equations”, J. Stat. Phys., 17:4 (1977), 171–187 | DOI | MR

[38] Singh N., Brumer P., “Efficient computational approach to the non-Markovian second order quantum master equation: Electronic energy transfer in model photosynthetic systems”, Mol. Phys., 110:15–16 (2012), 1815–1828 | DOI

[39] Siudzińska K., Chruściński D., “Memory kernel approach to generalized Pauli channels: Markovian, semi-Markov, and beyond”, Phys. Rev. A, 96:2 (2017), 022129 | DOI | MR

[40] Strasberg P., Esposito M., “Response functions as quantifiers of non-Markovianity”, Phys. Rev. Lett., 121:4 (2018), 040601 | DOI

[41] L. A. Takhtajan, Quantum Mechanics for Mathematicians, Grad. Stud. Math., 95, Am. Math. Soc., Providence, RI, 2008 | DOI | MR | Zbl

[42] A. E. Teretenkov, “Quadratic fermionic dynamics with dissipation”, Math. Notes, 102:5–6 (2017), 846–853 | DOI | MR | Zbl

[43] A. E. Teretenkov, “Pseudomode approach and vibronic non-Markovian phenomena in light-harvesting complexes”, Proc. Steklov Inst. Math., 306 (2019), 242–256 | DOI | MR | Zbl

[44] A. E. Teretenkov, “Dynamics of moments for quadratic GKSL generators”, Math. Notes, 106:1–2 (2019), 151–155 | DOI | MR | Zbl

[45] Teretenkov A.E., “Irreversible quantum evolution with quadratic generator: Review”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 22:4 (2019), 1930001 | DOI | MR | Zbl

[46] A. E. Teretenkov, “Dynamics of moments of arbitrary order for stochastic Poisson compressions”, Math. Notes, 107:3–4 (2020), 695–698 | DOI | MR | Zbl

[47] Teretenkov A.E., Non-perturbative effects in corrections to quantum master equation arising in Bogolubov–Van Hove limit, E-print, 2020, arXiv: 2008.02820 [quant-ph]

[48] Timm C., “Time-convolutionless master equation for quantum dots: Perturbative expansion to arbitrary order”, Phys. Rev. B, 83:11 (2011), 115416 | DOI

[49] Trushechkin A., “Calculation of coherences in Förster and modified Redfield theories of excitation energy transfer”, J. Chem. Phys., 151:7 (2019), 074101 | DOI

[50] Trushechkin A.S., “Higher-order corrections to the Redfield equation with respect to the system-bath coupling based on the hierarchical equations of motion”, Lobachevskii J. Math., 40:10 (2019), 1606–1618 | DOI | MR | Zbl

[51] Vacchini B., “Generalized master equations leading to completely positive dynamics”, Phys. Rev. Lett., 117:23 (2016), 230401 | DOI | MR

[52] Van Hove L., “Quantum-mechanical perturbations giving rise to a statistical transport equation”, Physica, 21:1–5 (1954), 517–540 | MR

[53] Van Kampen N.G., “A cumulant expansion for stochastic linear differential equations. I, II”, Physica, 74:2 (1974), 215–238, 239–247 | DOI | MR

[54] Wolf M.M., Quantum channels operations: Guided tour, Preprint, Tech. Univ. München, Munich, 2012 https://www-m5.ma.tum.de/foswiki/pub/M5/Allgemeines/MichaelWolf/QChannelLecture.pdf

[55] Wolf M.M., Eisert J., Cubitt T.S., Cirac J.I., “Assessing non-Markovian quantum dynamics”, Phys. Rev. Lett., 101:15 (2008), 150402 | DOI | MR | Zbl

[56] Wudarski F.A., Należyty P., Sarbicki G., Chruściński D., “Admissible memory kernels for random unitary qubit evolution”, Phys. Rev. A, 91:4 (2015), 042105 | DOI | MR

[57] Zwanzig R., “Ensemble method in the theory of irreversibility”, J. Chem. Phys., 33:5 (1960), 1338–1341 | DOI | MR