Continuous Measurements in Probability Representation of Quantum Mechanics
Informatics and Automation, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 208-218.

Voir la notice de l'article provenant de la source Math-Net.Ru

The continuous quantum measurement within the probability representation of quantum mechanics is discussed. The partial classical propagator of the symplectic tomogram associated to a particular measurement outcome is introduced, for which the representation of a continuous measurement through the restricted path integral is applied. The classical propagator for the system undergoing a non-selective measurement is derived by summing these partial propagators over the entire outcome set. The elaborated approach is illustrated by considering the non-selective position measurement of a quantum oscillator and a quantum particle.
@article{TRSPY_2021_313_a17,
     author = {Ya. V. Przhiyalkovskiy},
     title = {Continuous {Measurements} in {Probability} {Representation} of {Quantum} {Mechanics}},
     journal = {Informatics and Automation},
     pages = {208--218},
     publisher = {mathdoc},
     volume = {313},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_313_a17/}
}
TY  - JOUR
AU  - Ya. V. Przhiyalkovskiy
TI  - Continuous Measurements in Probability Representation of Quantum Mechanics
JO  - Informatics and Automation
PY  - 2021
SP  - 208
EP  - 218
VL  - 313
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2021_313_a17/
LA  - ru
ID  - TRSPY_2021_313_a17
ER  - 
%0 Journal Article
%A Ya. V. Przhiyalkovskiy
%T Continuous Measurements in Probability Representation of Quantum Mechanics
%J Informatics and Automation
%D 2021
%P 208-218
%V 313
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2021_313_a17/
%G ru
%F TRSPY_2021_313_a17
Ya. V. Przhiyalkovskiy. Continuous Measurements in Probability Representation of Quantum Mechanics. Informatics and Automation, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 208-218. http://geodesic.mathdoc.fr/item/TRSPY_2021_313_a17/

[1] Albash T., Lidar D.A., “Decoherence in adiabatic quantum computation”, Phys. Rev. A, 91:6 (2015), 062320 | DOI

[2] Beige A., Braun D., Tregenna B., Knight P.L., “Quantum computing using dissipation to remain in a decoherence-free subspace”, Phys. Rev. Lett., 85:8 (2000), 1762–1765 | DOI

[3] Chernega V.N., Man'ko O.V., Man'ko V.I., “Probability representation of quantum states as a renaissance of hidden variables—God plays coins”, J. Russ. Laser Res., 40:2 (2019), 107–120 | DOI

[4] Chernega V.N., Man'ko O.V., Man'ko V.I., “Probability representation of quantum mechanics where system states are identified with probability distributions”, Quantum Rep., 2:1 (2020), 64–79 | DOI | MR

[5] Davies E.B., “Quantum stochastic processes”, Commun. Math. Phys., 15:4 (1969), 277–304 | DOI | MR | Zbl

[6] Davies E.B., “Quantum stochastic processes. II”, Commun. Math. Phys., 19:2 (1970), 83–105 | DOI | MR | Zbl

[7] Davies E.B., “Quantum stochastic processes. III”, Commun. Math. Phys., 22:1 (1971), 51–70 | DOI | MR | Zbl

[8] Davies E.B., Lewis J.T., “An operational approach to quantum probability”, Commun. Math. Phys., 17:3 (1970), 239–260 | DOI | MR | Zbl

[9] Fedorov A., “Feynman integral and perturbation theory in quantum tomography”, Phys. Lett. A, 377:37 (2013), 2320–2323 | DOI | MR | Zbl

[10] Feynman R.P., Hibbs A.R., Styer D.F., Quantum mechanics and path integrals, Dover Publ., Mineola, NY, 2010 | MR | Zbl

[11] Ibort A., Man'ko V.I., Marmo G., Simoni A., Ventriglia F., “An introduction to the tomographic picture of quantum mechanics”, Phys. scr., 79:6 (2009), 065013 | DOI | MR | Zbl

[12] Jacobs K., Steck D.A., “A straightforward introduction to continuous quantum measurement”, Contemp. Phys., 47:5 (2006), 279–303 | DOI

[13] Konetchnyi A., Mensky M., Namiot V., “Physical model for monitoring the position of a quantum particle”, Phys. Lett. A, 177:4–5 (1993), 283–289 | DOI | MR

[14] Korennoy Ya.A., Man'ko V.I., “Gauge transformation of quantum states in probability representation”, J. Phys. A: Math. Theor., 50:15 (2017), 155302 | DOI | MR | Zbl

[15] Lvovsky A.I., Raymer M.G., “Continuous-variable optical quantum-state tomography”, Rev. Mod. Phys., 81:1 (2009), 299–332 | DOI

[16] Mancini S., Man'ko V.I., Tombesi P., “Wigner function and probability distribution for shifted and squeezed quadratures”, Quantum Semiclassic. Opt., 7:4 (1995), 615–623 | DOI

[17] Mancini S., Man'ko V.I., Tombesi P., “Symplectic tomography as classical approach to quantum systems”, Phys. Lett. A, 213:1–2 (1996), 1–6 | DOI | MR | Zbl

[18] Mancini S., Man'ko V.I., Tombesi P., “Classical-like description of quantum dynamics by means of symplectic tomography”, Found. Phys., 27:6 (1997), 801–824 | DOI | MR

[19] Man'ko M.A., “Joint probability distributions and conditional probabilities in the tomographic representation of quantum states”, Phys. scr., 2013:T153 (2013), 014045 | DOI

[20] Man'ko M.A., Man'ko V.I., De Nicola S., Fedele R., “Probability representation and new entropic uncertainty relations for symplectic and optical tomograms”, Acta phys. Hung. B: Quantum Electron., 26:1–2 (2006), 71–77 | DOI

[21] Manko O.V., “Tomographic representation of quantum mechanics and statistical physics”, Foundations of probability and physics–5, Proc. Int. Conf. (Växjö, 2008), AIP Conf. Proc., 1101, Amer. Inst. Phys., Melville, NY, 2009, 104–109 | DOI | MR | Zbl

[22] Man'ko O., Man'ko V.I., “Quantum states in probability representation and tomography”, J. Russ. Laser Res., 18:5 (1997), 407–444 | DOI

[23] Man'ko O., Man'ko V.I., ““Classical” propagator and path integral in the probability representation of quantum mechanics”, J. Russ. Laser Res., 20:1 (1999), 67–76 | DOI | MR

[24] Man'ko V.I., Rosa L., Vitale P., “Time-dependent invariants and Green functions in the probability representation of quantum mechanics”, Phys. Rev. A, 57:5 (1998), 3291–3303 | DOI

[25] Mensky M.B., “Quantum restrictions for continuous observation of an oscillator”, Phys. Rev. D, 20:2 (1979), 384–387 | DOI

[26] M. B. Menskii, “Evolution of a quantum system subject to continuous measurement”, Theor. Math. Phys., 75:1 (1988), 357–365 | DOI | MR

[27] Mensky M.B., Continuous quantum measurements and path integrals, IOP Publ., Bristol, 1993 | MR

[28] Mensky M., “Continuous quantum measurements: Restricted path integrals and master equations”, Phys. Lett. A, 196:3–4 (1994), 159–167 | DOI | MR | Zbl

[29] Pechen A., Il'in N., Shuang F., Rabitz H., “Quantum control by von Neumann measurements”, Phys. Rev. A, 74:5 (2006), 052102 | DOI | MR

[30] Pechen A., Trushechkin A., “Measurement-assisted Landau–Zener transitions”, Phys. Rev. A, 91:5 (2015), 052316 | DOI

[31] Pellizzari T., Gardiner S.A., Cirac J.I., Zoller P., “Decoherence, continuous observation, and quantum computing: A cavity QED model”, Phys. Rev. Lett., 75:21 (1995), 3788–3791 | DOI

[32] Shuang F., Pechen A., Ho T.-S., Rabitz H., “Observation-assisted optimal control of quantum dynamics”, J. Chem. Phys., 126:13 (2007), 134303 | DOI

[33] Shuang F., Zhou M., Pechen A., Wu R., Shir O.M., Rabitz H., “Control of quantum dynamics by optimized measurements”, Phys. Rev. A, 78:6 (2008), 063422 | DOI