Quantum Markov Chains on Comb Graphs: Ising Model
Informatics and Automation, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 192-207.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct quantum Markov chains (QMCs) over comb graphs. As an application of this construction, we prove the existence of a disordered phase for Ising type models (within the QMC scheme) over comb graphs. Moreover, we also establish that the associated QMC has the clustering property with respect to translations of the graph. We stress that this paper is the first one where a nontrivial example of QMCs over irregular graphs is given.
Mots-clés : quantum Markov chain, comb graph
Keywords: Ising model, clustering.
@article{TRSPY_2021_313_a16,
     author = {Farrukh Mukhamedov and Abdessatar Souissi and Tarek Hamdi},
     title = {Quantum {Markov} {Chains} on {Comb} {Graphs:} {Ising} {Model}},
     journal = {Informatics and Automation},
     pages = {192--207},
     publisher = {mathdoc},
     volume = {313},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_313_a16/}
}
TY  - JOUR
AU  - Farrukh Mukhamedov
AU  - Abdessatar Souissi
AU  - Tarek Hamdi
TI  - Quantum Markov Chains on Comb Graphs: Ising Model
JO  - Informatics and Automation
PY  - 2021
SP  - 192
EP  - 207
VL  - 313
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2021_313_a16/
LA  - ru
ID  - TRSPY_2021_313_a16
ER  - 
%0 Journal Article
%A Farrukh Mukhamedov
%A Abdessatar Souissi
%A Tarek Hamdi
%T Quantum Markov Chains on Comb Graphs: Ising Model
%J Informatics and Automation
%D 2021
%P 192-207
%V 313
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2021_313_a16/
%G ru
%F TRSPY_2021_313_a16
Farrukh Mukhamedov; Abdessatar Souissi; Tarek Hamdi. Quantum Markov Chains on Comb Graphs: Ising Model. Informatics and Automation, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 192-207. http://geodesic.mathdoc.fr/item/TRSPY_2021_313_a16/

[1] L. Accardi, “The noncommutative Markovian property”, Funct. Anal. Appl., 9:1 (1975), 1–7 | DOI | MR | Zbl

[2] Accardi L., “Topics in quantum probability”, Phys. Rep., 77:3 (1981), 169–192 | DOI | MR

[3] Accardi L., Cecchini C., “Conditional expectations in von Neumann algebras and a theorem of Takesaki”, J. Funct. Anal., 45:2 (1982), 245–273 | DOI | MR | Zbl

[4] Accardi L., Fidaleo F., Mukhamedov F., “Markov states and chains on the CAR algebra”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 10:2 (2007), 165–183 | DOI | MR | Zbl

[5] Accardi L., Frigerio A., “Markovian cocycles”, Proc. R. Ir. Acad. A, 83 (1983), 251–263 | MR | Zbl

[6] Accardi L., Mukhamedov F., Saburov M., “On quantum Markov chains on Cayley tree. I: Uniqueness of the associated chain with $XY$-model on the Cayley tree of order two”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 14:3 (2011), 443–463 | DOI | MR | Zbl

[7] Accardi L., Mukhamedov F., Saburov M., “On quantum Markov chains on Cayley tree. II: Phase transitions for the associated chain with $XY$-model on the Cayley tree of order three”, Ann. Henri Poincaré, 12:6 (2011), 1109–1144 | DOI | MR | Zbl

[8] Accardi L., Mukhamedov F., Saburov M., “On quantum Markov chains on Cayley tree. III: Ising model”, J. Stat. Phys., 157:2 (2014), 303–329 | DOI | MR | Zbl

[9] Accardi L., Ohno H., Mukhamedov F., “Quantum Markov fields on graphs”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 13:2 (2010), 165–189 | DOI | MR | Zbl

[10] Accardi L., Souissi A., El Gheteb S., “Quantum Markov chains: A unification approach”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 23:2 (2020), 2050016 | DOI | MR | Zbl

[11] Accardi L., Watson G.S., “Quantum random walks”, Quantum probability and applications IV, Proc. year of quantum probability (Rome, 1987), Lect. Notes Math., 1396, ed. by L. Accardi, W. von Waldenfels, Springer, Berlin, 1987, 73–88 | DOI | MR

[12] Affleck I., Kennedy T., Lieb E.H., Tasaki H., “Valence bond ground states in isotropic quantum antiferromagnets”, Commun. Math. Phys., 115:3 (1988), 477–528 | DOI | MR

[13] Araki H., Evans D.E., “On a $C^*$-algebra approach to phase transition in the two-dimensional Ising model”, Commun. Math. Phys., 91:4 (1983), 489–503 | DOI | MR | Zbl

[14] Attal S., Petruccione F., Sabot C., Sinayskiy I., “Open quantum random walks”, J. Stat. Phys., 147:4 (2012), 832–852 | DOI | MR | Zbl

[15] Baxter R.J., Exactly solved models in statistical mechanics, Acad. Press, London, 1982 | MR | Zbl

[16] Carbone R., Pautrat Y., “Open quantum random walks: Reducibility, period, ergodic properties”, Ann. Henri Poincaré, 17:1 (2016), 99–135 | DOI | MR | Zbl

[17] Cirac J.I., Verstraete F., “Renormalization and tensor product states in spin chains and lattices”, J. Phys. A: Math. Theor., 42:50 (2009), 504004 | DOI | MR | Zbl

[18] Dhahri A., Ko C.K., Yoo H.J., “Quantum Markov chains associated with open quantum random walks”, J. Stat. Phys., 176:5 (2019), 1272–1295 | DOI | MR | Zbl

[19] Dhahri A., Mukhamedov F., “Open quantum random walks, quantum Markov chains and recurrence”, Rev. Math. Phys., 31:7 (2019), 1950020 | DOI | MR | Zbl

[20] A. Dhahri and F. Mukhamedov, “Open quantum random walks and quantum Markov chains”, Funct. Anal. Appl., 53:2 (2019), 137–142 | DOI | MR | Zbl

[21] Fannes M., Nachtergaele B., Werner R.F., “Ground states of VBS models on Cayley trees”, J. Stat. Phys., 66:3–4 (1992), 939–973 | DOI | MR | Zbl

[22] Fannes M., Nachtergaele B., Werner R.F., “Finitely correlated states on quantum spin chains”, Commun. Math. Phys., 144:3 (1992), 443–490 | DOI | MR | Zbl

[23] Feng Y., Yu N., Ying M., “Model checking quantum Markov chains”, J. Comput. Syst. Sci., 79:7 (2013), 1181–1198 | DOI | MR | Zbl

[24] Gudder S., “Quantum Markov chains”, J. Math. Phys., 49:7 (2008), 072105 | DOI | MR | Zbl

[25] Kempe J., “Quantum random walks: An introductory overview”, Contemp. Phys., 44:4 (2003), 307–327 | DOI

[26] Konno N., Yoo H.J., “Limit theorems for open quantum random walks”, J. Stat. Phys., 150:2 (2013), 299–319 | DOI | MR | Zbl

[27] Kramers H.A., Wannier G.H., “Statistics of the two-dimensional ferromagnet. Part II”, Phys. Rev., 60:3 (1941), 263–276 | DOI | MR

[28] Laumann C.R., Parameswaran S.A., Sondhi S.L., Zamponi F., “AKLT models with quantum spin glass ground states”, Phys. Rev. B, 81:17 (2010), 174204 | DOI

[29] Mukhamedov F., Barhoumi A., Souissi A., “Phase transitions for quantum Markov chains associated with Ising type models on a Cayley tree”, J. Stat. Phys., 163:3 (2016), 544–567 | DOI | MR | Zbl

[30] Mukhamedov F., Barhoumi A., Souissi A., “On an algebraic property of the disordered phase of the Ising model with competing interactions on a Cayley tree”, Math. Phys. Anal. Geom., 19:4 (2016), 21 | DOI | MR | Zbl

[31] Mukhamedov F., Barhoumi A., Souissi A., El Gheteb S., “A quantum Markov chain approach to phase transitions for quantum Ising model with competing $XY$-interactions on a Cayley tree”, J. Math. Phys., 61:9 (2020), 093505 | DOI | MR | Zbl

[32] Mukhamedov F., El Gheteb S., “Uniqueness of quantum Markov chain associated with XY-Ising model on Cayley tree of order two”, Open Syst. Inf. Dyn., 24:2 (2017), 1750010 | DOI | MR | Zbl

[33] Mukhamedov F., El Gheteb S., “Clustering property of quantum Markov chain associated to XY-model with competing Ising interactions on the Cayley tree of order two”, Math. Phys. Anal. Geom., 22:1 (2019), 10 | DOI | MR | Zbl

[34] Mukhamedov F., El Gheteb S., “Factors generated by $XY$-model with competing Ising interactions on the Cayley tree”, Ann. Henri Poincaré, 21:1 (2020), 241–253 | DOI | MR | Zbl

[35] Mukhamedov F., Rozikov U., “On Gibbs measures of models with competing ternary and binary interactions and corresponding von Neumann algebras”, J. Stat. Phys., 114:3–4 (2004), 825–848 | DOI | MR | Zbl

[36] Mukhamedov F., Rozikov U., “On Gibbs measures of models with competing ternary and binary interactions and corresponding von Neumann algebras. II”, J. Stat. Phys., 119:1–2 (2005), 427–446 | DOI | MR | Zbl

[37] Mukhamedov F., Souissi A., “Quantum Markov states on Cayley trees”, J. Math. Anal. Appl., 473:1 (2019), 313–333 | DOI | MR | Zbl

[38] Nagaj D., Farhi E., Goldstone J., Shor P., Sylvester I., “Quantum transverse-field Ising model on an infinite tree from matrix product states”, Phys. Rev. B, 77:21 (2008), 214431 | DOI

[39] Orús R., “A practical introduction to tensor networks: Matrix product states and projected entangled pair states”, Ann. Phys., 349 (2014), 117–158 | DOI | MR | Zbl

[40] Portugal R., Quantum walks and search algorithms, Springer, New York, 2013 | MR | Zbl