Optimal Calder\'on Spaces for Generalized Bessel Potentials
Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 43-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the properties of spaces with generalized smoothness, such as Calderón spaces, that include the classical Nikolskii–Besov spaces and many of their generalizations, and describe differential properties of generalized Bessel potentials that include classical Bessel potentials and Sobolev spaces. The kernels of potentials may have non-power singularities at the origin. Using order-sharp estimates for the moduli of continuity of potentials, we establish criteria for the embeddings of potentials into Calderón spaces and describe the optimal spaces for such embeddings.
@article{TRSPY_2021_312_a2,
     author = {Elza G. Bakhtigareeva and Mikhail L. Goldman and Dorothee D. Haroske},
     title = {Optimal {Calder\'on} {Spaces} for {Generalized} {Bessel} {Potentials}},
     journal = {Informatics and Automation},
     pages = {43--81},
     publisher = {mathdoc},
     volume = {312},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a2/}
}
TY  - JOUR
AU  - Elza G. Bakhtigareeva
AU  - Mikhail L. Goldman
AU  - Dorothee D. Haroske
TI  - Optimal Calder\'on Spaces for Generalized Bessel Potentials
JO  - Informatics and Automation
PY  - 2021
SP  - 43
EP  - 81
VL  - 312
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a2/
LA  - ru
ID  - TRSPY_2021_312_a2
ER  - 
%0 Journal Article
%A Elza G. Bakhtigareeva
%A Mikhail L. Goldman
%A Dorothee D. Haroske
%T Optimal Calder\'on Spaces for Generalized Bessel Potentials
%J Informatics and Automation
%D 2021
%P 43-81
%V 312
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a2/
%G ru
%F TRSPY_2021_312_a2
Elza G. Bakhtigareeva; Mikhail L. Goldman; Dorothee D. Haroske. Optimal Calder\'on Spaces for Generalized Bessel Potentials. Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 43-81. http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a2/

[1] E. G. Bakhtigareeva and M. L. Goldman, “Associate norms and optimal embeddings for a class of two-weight integral quasi-norms”, J. Math. Sci., 218:5 (2016), 549–571 | DOI | MR | Zbl

[2] Bakhtigareeva E.G., Goldman M.L., Zabreiko P.P., “Optimalnoe vosstanovlenie obobschennogo banakhova funktsionalnogo prostranstva po konusu neotritsatelnykh funktsii”, Vestn. Tambov. un-ta. Estestv. i tekhn. nauki, 19:2 (2014), 316–330

[3] Bennett C., Sharpley R., Interpolation of operators, Pure Appl. Math., 129, Acad. Press, Boston, 1988 | MR | Zbl

[4] Carro M., Pick L., Soria J., Stepanov V.D., “On embeddings between classical Lorentz spaces”, Math. Inequal. Appl., 4:3 (2001), 397–428 | MR | Zbl

[5] Carro M.J., Soria J., “Weighted Lorentz spaces and the Hardy operator”, J. Funct. Anal., 112:2 (1993), 480–494 | DOI | MR | Zbl

[6] Gogatishvili A., Neves J.S., Opic B., “Compact embeddings of Bessel-potential-type spaces into generalized Hölder spaces involving $k$-modulus of smoothness”, Z. Anal. Anwend., 30:1 (2011), 1–27 | DOI | MR | Zbl

[7] Gogatishvili A., Opic B., Neves J.S., “Optimality of embeddings of Bessel-potential-type spaces into Lorentz–Karamata spaces”, Proc. R. Soc. Edinb. Sect. A: Math., 134:6 (2004), 1127–1147 | DOI | MR | Zbl

[8] M. L. Gol'dman, “Imbedding with different metrics for spaces of Calderón type”, Proc. Steklov Inst. Math., 181 (1989), 75–101 | Zbl | Zbl

[9] M. L. Goldman, “Optimal embeddings of generalized Bessel and Riesz potentials”, Proc. Steklov Inst. Math., 269 (2010), 85–105 | DOI | MR | Zbl

[10] Goldman M.L., Haroske D.D., “Estimates for continuity envelopes and approximation numbers of Bessel potentials”, J. Approx. Theory, 172 (2013), 58–85 | DOI | MR | Zbl

[11] M. L. Goldman and D. Haroske, “Optimal Calderón space for Bessel potentials”, Dokl. Math., 90:2 (2014), 599–602 | DOI | MR | Zbl

[12] M. L. Goldman and D. Haroske, “Optimal Calderón spaces for generalized Bessel potentials”, Dokl. Math., 92:1 (2015), 404–407 | DOI | MR | Zbl

[13] M. L. Goldman and A. V. Malysheva, “Estimation of the uniform modulus of continuity of the generalized Bessel potential”, Proc. Steklov Inst. Math., 283 (2013), 75–86 | DOI | MR | Zbl

[14] M. L. Gol'dman and A. V. Malysheva, “Two-sided estimate for the modulus of continuity of a convolution”, Diff. Eqns., 49:5 (2013), 557–568 | MR | Zbl

[15] Haroske D.D., Envelopes and sharp embeddings of function spaces, Chapman Hall/CRC Res. Notes Math., 437, Chapman Hall/CRC, Boca Raton, FL, 2007 | MR | Zbl

[16] V. G. Maz'ya, Sobolev Spaces, Springer, Berlin, 1985 | MR | MR | Zbl

[17] Neves J.S., Lorentz–Karamata spaces, Bessel and Riesz potentials and embeddings, Diss. Math., 405, Inst. Mat. PAN, Warsaw, 2002 | MR

[18] S. M. Nikol'skii, Approximation of Functions of Several Variables and Imbedding Theorems, Grundl. Math. Wiss., 205, Springer, Berlin, 1975

[19] H. Triebel, Theory of Function Spaces, Monogr. Math., 78, Birkhäuser, Basel, 1983 | MR | Zbl

[20] Triebel H., The structure of functions, Monogr. Math., 97, Birkhäuser, Basel, 2001 | MR | Zbl