Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2021_312_a2, author = {Elza G. Bakhtigareeva and Mikhail L. Goldman and Dorothee D. Haroske}, title = {Optimal {Calder\'on} {Spaces} for {Generalized} {Bessel} {Potentials}}, journal = {Informatics and Automation}, pages = {43--81}, publisher = {mathdoc}, volume = {312}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a2/} }
TY - JOUR AU - Elza G. Bakhtigareeva AU - Mikhail L. Goldman AU - Dorothee D. Haroske TI - Optimal Calder\'on Spaces for Generalized Bessel Potentials JO - Informatics and Automation PY - 2021 SP - 43 EP - 81 VL - 312 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a2/ LA - ru ID - TRSPY_2021_312_a2 ER -
Elza G. Bakhtigareeva; Mikhail L. Goldman; Dorothee D. Haroske. Optimal Calder\'on Spaces for Generalized Bessel Potentials. Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 43-81. http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a2/
[1] E. G. Bakhtigareeva and M. L. Goldman, “Associate norms and optimal embeddings for a class of two-weight integral quasi-norms”, J. Math. Sci., 218:5 (2016), 549–571 | DOI | MR | Zbl
[2] Bakhtigareeva E.G., Goldman M.L., Zabreiko P.P., “Optimalnoe vosstanovlenie obobschennogo banakhova funktsionalnogo prostranstva po konusu neotritsatelnykh funktsii”, Vestn. Tambov. un-ta. Estestv. i tekhn. nauki, 19:2 (2014), 316–330
[3] Bennett C., Sharpley R., Interpolation of operators, Pure Appl. Math., 129, Acad. Press, Boston, 1988 | MR | Zbl
[4] Carro M., Pick L., Soria J., Stepanov V.D., “On embeddings between classical Lorentz spaces”, Math. Inequal. Appl., 4:3 (2001), 397–428 | MR | Zbl
[5] Carro M.J., Soria J., “Weighted Lorentz spaces and the Hardy operator”, J. Funct. Anal., 112:2 (1993), 480–494 | DOI | MR | Zbl
[6] Gogatishvili A., Neves J.S., Opic B., “Compact embeddings of Bessel-potential-type spaces into generalized Hölder spaces involving $k$-modulus of smoothness”, Z. Anal. Anwend., 30:1 (2011), 1–27 | DOI | MR | Zbl
[7] Gogatishvili A., Opic B., Neves J.S., “Optimality of embeddings of Bessel-potential-type spaces into Lorentz–Karamata spaces”, Proc. R. Soc. Edinb. Sect. A: Math., 134:6 (2004), 1127–1147 | DOI | MR | Zbl
[8] M. L. Gol'dman, “Imbedding with different metrics for spaces of Calderón type”, Proc. Steklov Inst. Math., 181 (1989), 75–101 | Zbl | Zbl
[9] M. L. Goldman, “Optimal embeddings of generalized Bessel and Riesz potentials”, Proc. Steklov Inst. Math., 269 (2010), 85–105 | DOI | MR | Zbl
[10] Goldman M.L., Haroske D.D., “Estimates for continuity envelopes and approximation numbers of Bessel potentials”, J. Approx. Theory, 172 (2013), 58–85 | DOI | MR | Zbl
[11] M. L. Goldman and D. Haroske, “Optimal Calderón space for Bessel potentials”, Dokl. Math., 90:2 (2014), 599–602 | DOI | MR | Zbl
[12] M. L. Goldman and D. Haroske, “Optimal Calderón spaces for generalized Bessel potentials”, Dokl. Math., 92:1 (2015), 404–407 | DOI | MR | Zbl
[13] M. L. Goldman and A. V. Malysheva, “Estimation of the uniform modulus of continuity of the generalized Bessel potential”, Proc. Steklov Inst. Math., 283 (2013), 75–86 | DOI | MR | Zbl
[14] M. L. Gol'dman and A. V. Malysheva, “Two-sided estimate for the modulus of continuity of a convolution”, Diff. Eqns., 49:5 (2013), 557–568 | MR | Zbl
[15] Haroske D.D., Envelopes and sharp embeddings of function spaces, Chapman Hall/CRC Res. Notes Math., 437, Chapman Hall/CRC, Boca Raton, FL, 2007 | MR | Zbl
[16] V. G. Maz'ya, Sobolev Spaces, Springer, Berlin, 1985 | MR | MR | Zbl
[17] Neves J.S., Lorentz–Karamata spaces, Bessel and Riesz potentials and embeddings, Diss. Math., 405, Inst. Mat. PAN, Warsaw, 2002 | MR
[18] S. M. Nikol'skii, Approximation of Functions of Several Variables and Imbedding Theorems, Grundl. Math. Wiss., 205, Springer, Berlin, 1975
[19] H. Triebel, Theory of Function Spaces, Monogr. Math., 78, Birkhäuser, Basel, 1983 | MR | Zbl
[20] Triebel H., The structure of functions, Monogr. Math., 97, Birkhäuser, Basel, 2001 | MR | Zbl