Optimal Calder\'on Spaces for Generalized Bessel Potentials
Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 43-81
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate the properties of spaces with generalized smoothness, such as Calderón spaces, that include the classical Nikolskii–Besov spaces and many of their generalizations, and describe differential properties of generalized Bessel potentials that include classical Bessel potentials and Sobolev spaces. The kernels of potentials may have non-power singularities at the origin. Using order-sharp estimates for the moduli of continuity of potentials, we establish criteria for the embeddings of potentials into Calderón spaces and describe the optimal spaces for such embeddings.
@article{TRSPY_2021_312_a2,
author = {Elza G. Bakhtigareeva and Mikhail L. Goldman and Dorothee D. Haroske},
title = {Optimal {Calder\'on} {Spaces} for {Generalized} {Bessel} {Potentials}},
journal = {Informatics and Automation},
pages = {43--81},
publisher = {mathdoc},
volume = {312},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a2/}
}
TY - JOUR AU - Elza G. Bakhtigareeva AU - Mikhail L. Goldman AU - Dorothee D. Haroske TI - Optimal Calder\'on Spaces for Generalized Bessel Potentials JO - Informatics and Automation PY - 2021 SP - 43 EP - 81 VL - 312 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a2/ LA - ru ID - TRSPY_2021_312_a2 ER -
Elza G. Bakhtigareeva; Mikhail L. Goldman; Dorothee D. Haroske. Optimal Calder\'on Spaces for Generalized Bessel Potentials. Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 43-81. http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a2/