Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2021_312_a19, author = {E. P. Ushakova}, title = {Spline {Wavelet} {Decomposition} in {Weighted} {Function} {Spaces}}, journal = {Informatics and Automation}, pages = {313--337}, publisher = {mathdoc}, volume = {312}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a19/} }
E. P. Ushakova. Spline Wavelet Decomposition in Weighted Function Spaces. Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 313-337. http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a19/
[1] Aimar H.A., Bernardis A.L., Martín-Reyes F.J., “Multiresolution approximations and wavelet bases of weighted $L^p$ spaces”, J. Fourier Anal. Appl., 9:5 (2003), 497–510 | DOI | MR | Zbl
[2] Battle G., “A block spin construction of ondelettes. Part I: Lemarié functions”, Commun. Math. Phys., 110:4 (1987), 601–615 | DOI | MR
[3] Battle G., “A block spin construction of ondelettes. Part II: QFT connection”, Commun. Math. Phys., 114:1 (1988), 93–102 | DOI | MR
[4] M. Z. Berkolaiko and I. Ya. Novikov, “Unconditional bases in spaces of functions of anisotropic smoothness”, Proc. Steklov Inst. Math., 204 (1994), 27–41 | MR | Zbl
[5] O. V. Besov, V. P. Il'in, and S. M. Nikol'skii, Integral Representations of Functions and Imbedding Theorems, J. Wiley Sons, New York, 1979 | MR | Zbl
[6] Bourdaud G., “Ondelettes et espaces de Besov”, Rev. Mat. Iberoam., 11:3 (1995), 477–512 | DOI | MR | Zbl
[7] Bownik M., “Atomic and molecular decompositions of anisotropic Besov spaces”, Math. Z., 250:3 (2005), 539–571 | DOI | MR | Zbl
[8] Bownik M., Ho K.-P., “Atomic and molecular decompositions of anisotropic Triebel–Lizorkin spaces”, Trans. Amer. Math. Soc., 358:4 (2006), 1469–1510 | DOI | MR | Zbl
[9] Bui H.-Q., “Weighted Besov and Triebel spaces: Interpolation by the real method”, Hiroshima Math. J., 12 (1982), 581–605 | MR | Zbl
[10] Chui C.K., An introduction to wavelets, Acad. Press, New York, 1992 | MR | Zbl
[11] Ciesielski Z., “Constructive function theory and spline systems”, Stud. math., 53:3 (1975), 277–302 | DOI | MR | Zbl
[12] Ciesielski Z., “Equivalence, unconditionality and convergence a.e. of the spline bases in $L_p$ spaces”, Approximation theory, Banach Cent. Publ., 4, PWN–Pol. Sci. Publ., Warsaw, 1979, 55–68 | DOI | MR
[13] Ciesielski Z., Figiel T., “Spline approximation and Besov spaces on compact manifolds”, Stud. math., 75:1 (1982), 13–36 | DOI | MR | Zbl
[14] Ciesielski Z., Figiel T., “Spline bases in classical function spaces on compact $C^\infty $ manifolds. I”, Stud. math., 76:1 (1983), 1–58 | DOI | MR | Zbl
[15] Ciesielski Z., Figiel T., “Spline bases in classical function spaces on compact $C^\infty $ manifolds. II”, Stud. math., 76:2 (1983), 95–136 | DOI | MR
[16] Cohen A., Daubechies I., Feauveau J.-C., “Biorthogonal bases of compactly supported wavelets”, Commun. Pure Appl. Math., 45:5 (1992), 485–560 | DOI | MR | Zbl
[17] Daubechies I., Ten lectures on wavelets, SIAM, Philadelphia, PA, 1992 | MR | Zbl
[18] Edmunds D.E., Triebel H., Function spaces, entropy numbers, differential operators, Cambridge Univ. Press, Cambridge, 1996 | MR | Zbl
[19] Farkas W., “Atomic and subatomic decompositions in anisotropic function spaces”, Math. Nachr., 209 (2000), 83–113 | 3.0.CO;2-1 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[20] Farwig R., Sohr H., “Weighted $L^q$-theory for the Stokes resolvent in exterior domains”, J. Math. Soc. Japan, 49:2 (1997), 251–288 | DOI | MR | Zbl
[21] Frazier M., Jawerth B., “Decomposition of Besov spaces”, Indiana Univ. Math. J., 34:4 (1985), 777–799 | DOI | MR | Zbl
[22] Frazier M., Jawerth B., “A discrete transform and decompositions of distribution spaces”, J. Funct. Anal., 93:1 (1990), 34–170 | DOI | MR | Zbl
[23] García-Cuerva J., Kazarian K.S., “Calderón–Zygmund operators and unconditional bases of weighted Hardy spaces”, Stud. math., 109:3 (1994), 255–276 | DOI | MR | Zbl
[24] García-Cuerva J., Kazarian K.S., “Spline wavelet bases of weighted $L^p$ spaces, $1\le p\infty $”, Proc. Amer. Math. Soc., 123:2 (1995), 433–439 | DOI | MR | Zbl
[25] Garrigós G., Seeger A., Ullrich T., “The Haar system as a Schauder basis in spaces of Hardy–Sobolev type”, J. Fourier Anal. Appl., 24:5 (2018), 1319–1339 | DOI | MR | Zbl
[26] Garrigós G., Seeger A., Ullrich T., “Basis properties of the Haar system in limiting Besov spaces”, Geometric aspects of harmonic analysis, Springer INdAM Ser., 45, Springer, Cham, 2021; arXiv: 1901.09117 [math.CA]
[27] Garrigós G., Seeger A., Ullrich T., The Haar system in Triebel–Lizorkin spaces: Endpoint results, E-print, 2020, arXiv: 1907.03738v2 [math.CA]
[28] Haroske D.D., Piotrowska I., “Atomic decompositions of function spaces with Muckenhoupt weights, and some relation to fractal analysis”, Math. Nachr., 281:10 (2008), 1476–1494 | DOI | MR | Zbl
[29] Haroske D.D., Skandera Ph., Triebel H., “An approach to wavelet isomorphisms of function spaces via atomic representations”, J. Fourier Anal. Appl., 24:3 (2018), 830–871 | DOI | MR | Zbl
[30] Haroske D., Skrzypczak L., “Entropy and approximation numbers of embeddings of function spaces with Muckenhoupt weights. I”, Rev. Mat. Complut., 21:1 (2008), 135–177 | DOI | MR | Zbl
[31] Haroske D., Skrzypczak L., “Spectral theory of some degenerate elliptic operators with local singularities”, J. Math. Anal. Appl., 371:1 (2010), 282–299 | DOI | MR | Zbl
[32] Haroske D., Skrzypczak L., “Entropy and approximation numbers of embeddings of function spaces with Muckenhoupt weights. II: General weights”, Ann. Acad. sci. Fenn. Math., 36:1 (2011), 111–138 | DOI | MR | Zbl
[33] Haroske D., Skrzypczak L., “Entropy numbers of embeddings of function spaces with Muckenhoupt weights. III: Some limiting cases”, J. Funct. Spaces Appl., 9:2 (2011), 129–178 | DOI | MR | Zbl
[34] Haroske D., Triebel H., “Entropy numbers in weighted function spaces and eigenvalue distributions of some degenerate pseudodifferential operators. I”, Math. Nachr., 167 (1994), 131–156 | DOI | MR | Zbl
[35] Haroske D., Triebel H., “Entropy numbers in weighted function spaces and eigenvalue distributions of some degenerate pseudodifferential operators. II”, Math. Nachr., 168 (1994), 109–137 | DOI | MR | Zbl
[36] Haroske D.D., Triebel H., “Wavelet bases and entropy numbers in weighted function spaces”, Math. Nachr., 278:1–2 (2005), 108–132 | DOI | MR | Zbl
[37] Hörmander L., The analysis of linear partial differential operators. I: Distribution theory and Fourier analysis, Springer, Berlin, 1990 | MR | Zbl
[38] Izuki M., Sawano Y., “Wavelet bases in the weighted Besov and Triebel–Lizorkin spaces with $A_p^{\text {loc}}$-weights”, J. Approx. Theory, 161:2 (2009), 656–673 | DOI | MR | Zbl
[39] Izuki M., Sawano Y., “Atomic decomposition for weighted Besov and Triebel–Lizorkin spaces”, Math. Nachr., 285:1 (2012), 103–126 | DOI | MR | Zbl
[40] Kühn T., Leopold H.-G., Sickel W., Skrzypczak L., “Entropy numbers of embeddings of weighted Besov spaces”, Constr. Approx., 23:1 (2006), 61–77 | DOI | MR | Zbl
[41] Kühn T., Leopold H.-G., Sickel W., Skrzypczak L., “Entropy numbers of embeddings of weighted Besov spaces. II”, Proc. Edinb. Math. Soc. Ser. 2, 49:2 (2006), 331–359 | DOI | MR | Zbl
[42] Lemarié P.G., “Ondelettes à localisation exponentielle”, J. Math. Pures Appl., 67:3 (1988), 227–236 | MR | Zbl
[43] Lemarié-Rieusset P.G., “Ondelettes et poids de Muckenhoupt”, Stud. math., 108:2 (1994), 127–147 | DOI | MR | Zbl
[44] Małecka A., “Haar functions in weighted Besov and Triebel–Lizorkin spaces”, J. Approx. Theory, 200 (2015), 1–27 | DOI | MR
[45] Mallat S., A wavelet tour of signal processing, 2nd ed., Acad. Press, San Diego, CA, 1999 | MR | Zbl
[46] Meyer Y., Wavelets and operators, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl
[47] Muckenhoupt B., “Hardy's inequality with weights”, Stud. math., 44 (1972), 31–38 | DOI | MR | Zbl
[48] Muckenhoupt B., “Weighted norm inequalities for the Hardy maximal function”, Trans. Amer. Math. Soc., 165 (1972), 207–226 | DOI | MR | Zbl
[49] Muckenhoupt B., “The equivalence of two conditions for weight functions”, Stud. Math., 49 (1974), 101–106 | DOI | MR | Zbl
[50] Nasyrova M.G., Ushakova E.P., “Wavelet bases and entropy numbers of Hardy operator”, Anal. math., 44:4 (2018), 543–576 | DOI | MR | Zbl
[51] I. Ya. Novikov, V. Yu. Protasov, and M. A. Skopina, Wavelet Theory, Transl. Math. Monogr., 239, Am. Math. Soc., Providence, RI, 2011 | DOI | MR | Zbl
[52] Novikov I.Ya., Stechkin S.B., “Osnovnye konstruktsii vspleskov”, Fund. i prikl. matematika, 3:4 (1997), 999–1028 | MR | Zbl
[53] I. Ya. Novikov and S. B. Stechkin, “Basic wavelet theory”, Russ. Math. Surv., 53:6 (1998), 1159–1231 | DOI | MR | MR | Zbl
[54] Ropela S., “Spline bases in Besov spaces”, Bull. Acad. Pol. Sci. Sér. Sci. Math. Astron. Phys., 24 (1976), 319–325 | MR | Zbl
[55] Roudenko S., “Matrix-weighted Besov spaces”, Trans. Amer. Math. Soc., 355:1 (2003), 273–314 | DOI | MR | Zbl
[56] Rychkov V.S., “Littlewood–Paley theory and function spaces with $A_p^{\text {loc}}$ weights”, Math. Nachr., 224 (2001), 145–180 | 3.0.CO;2-2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[57] Schmeisser H.-J., Triebel H., Topics in Fourier analysis and function spaces, J. Willey Sons, Chichester, 1987 | MR | Zbl
[58] Schott T., “Function spaces with exponential weights. I”, Math. Nahr., 189 (1998), 221–242 | MR | Zbl
[59] Schott T., “Function spaces with exponential weights. II”, Math. Nahr., 196 (1998), 231–250 | MR | Zbl
[60] Sickel W., Triebel H., “Hölder inequalities and sharp embeddings in function spaces of $B_{pq}^s$ and $F_{pq}^s$ type”, Z. Anal. Anwend., 14:1 (1995), 105–140 | DOI | MR | Zbl
[61] Skrzypczak L., “On approximation numbers of Sobolev embeddings of weighted function spaces”, J. Approx. Theory, 136:1 (2005), 91–107 | DOI | MR | Zbl
[62] Sjölin P., Strömberg J.-O., “Spline systems as bases in Hardy spaces”, Isr. J. Math., 45:2–3 (1983), 147–156 | DOI | MR
[63] Stein E.M., Harmonic analysis: Real-variable methods, orthogonality, and oscillatory integrals, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl
[64] Strömberg J.-O., Torchinsky A., Weighted Hardy spaces, Lect. Notes Math., 1381, Springer, Berlin, 1989 | DOI | MR | Zbl
[65] Torchinsky A., Real-variable methods in harmonic analysis, Pure Appl. Math., 123, Acad. Press, Orlando, FL, 1986 | MR | Zbl
[66] Triebel H., “Spline bases and spline representations in function spaces”, Arch. Math., 36 (1981), 348–359 | DOI | MR | Zbl
[67] Triebel H., Theory of function spaces, Birkhäuser, Basel, 1983 | MR | Zbl
[68] Triebel H., Theory of function spaces. II, Birkhäuser, Basel, 1992 | MR | Zbl
[69] Triebel H., Fractals and spectra related to Fourier analysis and function spaces, Birkhäuser, Basel, 1997 | MR | Zbl
[70] Triebel H., Theory of function spaces. III, Birkhäuser, Basel, 2006 | MR | Zbl
[71] Triebel H., “Local means and wavelets in function spaces”, Function spaces VIII, Proc. Conf. (Bȩdlewo, 2006), Banach Cent. Publ., 79, Pol. Acad. Sci., Inst. Math., Warsaw, 2008, 215–234 | MR | Zbl
[72] Triebel H., Bases in function spaces, sampling, discrepancy, numerical integration, Eur. Math. Soc., Zürich, 2010 | MR | Zbl
[73] A. I. Tyulenev, “Some new function spaces of variable smoothness”, Sb. Math., 206:6 (2015), 849–891 | DOI | MR | Zbl
[74] Tyulenev A.I., “On various approaches to Besov-type spaces of variable smoothness”, J. Math. Anal. Appl., 451:1 (2017), 371–392 | DOI | MR | Zbl
[75] Ushakova E.P., “Spline wavelet bases in function spaces with Muckenhoupt weights”, Rev. Mat. Complut., 33:1 (2020), 125–160 | DOI | MR | Zbl
[76] Ushakova E.P., Ushakova K.E., “Localisation property of Battle–Lemarié wavelets' sums”, J. Math. Anal. Appl., 461:1 (2018), 176–197 | DOI | MR | Zbl
[77] A. A. Vasil'eva, “Entropy numbers of embedding operators for weighted Sobolev spaces”, Math. Notes, 98:5–6 (2015), 982–985 | DOI | MR | Zbl
[78] Wojciechowska A., “Local means and wavelets in function spaces with local Muckenhoupt weights”, Function spaces IX, Proc. Int. Conf. (Kraków, 2009), Banach Cent. Publ., 92, Pol. Acad. Sci., Inst. Math., Warsaw, 2011, 399–412 | DOI | MR | Zbl
[79] Wojciechowska A., Multidimensional wavelet bases in Besov and Triebel–Lizorkin spaces, PhD Diss., Adam Mickiewicz Univ., Poznań, 2012
[80] Wojtaszczyk P., A mathematical introduction to wavelets, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl