Weighted Fourier Inequalities and Boundedness of Variation
Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 294-312.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the trigonometric series $\sum _{n=1}^\infty \lambda _n \cos nx$ and $\sum _{n=1}^\infty \lambda _n \sin nx$ with $\{\lambda _n\}$ being a sequence of bounded variation. Let $\psi $ denote the sum of such a series. We obtain necessary and sufficient conditions for the validity of the weighted Fourier inequality $\left (\int _0^\pi |\psi (x)|^q \omega (x)\,dx\right )^{1/q} \le C\!\left (\sum _{n=1}^\infty u_n\left (\sum _{k=n}^\infty |\lambda _{k}-\lambda _{k+1}|\right )^p \right )^{1/p}$, $0$, in terms of the weight $\omega $ and the weighted sequence $\{u_n\}$. Applications to the series with general monotone coefficients are given.
Keywords: Fourier series/transforms, weighted norm inequalities, Hardy–Littlewood type theorems, general monotone sequences.
@article{TRSPY_2021_312_a18,
     author = {Sergey Yu. Tikhonov},
     title = {Weighted {Fourier} {Inequalities} and {Boundedness} of {Variation}},
     journal = {Informatics and Automation},
     pages = {294--312},
     publisher = {mathdoc},
     volume = {312},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a18/}
}
TY  - JOUR
AU  - Sergey Yu. Tikhonov
TI  - Weighted Fourier Inequalities and Boundedness of Variation
JO  - Informatics and Automation
PY  - 2021
SP  - 294
EP  - 312
VL  - 312
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a18/
LA  - ru
ID  - TRSPY_2021_312_a18
ER  - 
%0 Journal Article
%A Sergey Yu. Tikhonov
%T Weighted Fourier Inequalities and Boundedness of Variation
%J Informatics and Automation
%D 2021
%P 294-312
%V 312
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a18/
%G ru
%F TRSPY_2021_312_a18
Sergey Yu. Tikhonov. Weighted Fourier Inequalities and Boundedness of Variation. Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 294-312. http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a18/

[1] Andersen K.F., “On the transformation of Fourier coefficients of certain classes of functions. II”, Pac. J. Math., 105:1 (1983), 1–10 | DOI | MR

[2] Andersen K.F., Heinig H.P., “Weighted norm inequalities for certain integral operators”, SIAM J. Math. Anal., 14:4 (1983), 834–844 | DOI | MR | Zbl

[3] Andersen K.F., Muckenhoupt B., “Weighted weak type Hardy inequalities with applications to Hilbert transforms and maximal functions”, Stud. math., 72 (1981), 9–26 | DOI | MR

[4] Ariño M., Muckenhoupt B., “Maximal functions on classical Lorentz spaces and Hardy's inequality with weights for nonincreasing functions”, Trans. Amer. Math. Soc., 320:2 (1990), 727–735 | MR | Zbl

[5] Askey R., “Norm inequalities for some orthogonal series”, Bull. Amer. Math. Soc., 72 (1966), 808–823 | DOI | MR | Zbl

[6] Askey R., “A transplantation theorem for Jacobi coefficients”, Pac. J. Math., 21 (1967), 393–404 | DOI | MR | Zbl

[7] Askey R., Wainger S., “Integrability theorems for Fourier series”, Duke Math. J., 33 (1966), 223–228 | DOI | MR | Zbl

[8] Askey R., Wainger S., “A transplantation theorem for ultraspherical coefficients”, Pac. J. Math., 16 (1966), 393–405 | DOI | MR | Zbl

[9] N. K. Bari, A Treatise on Trigonometric Series, v. I, II, Pergamon Press, Oxford, 1964 | MR

[10] Bari N.K., Stechkin S.B., “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. Mosk. mat. o-va, 5 (1956), 483–522 | Zbl

[11] Benedetto J.J., Heinig H.P., “Weighted Fourier inequalities: New proofs and generalizations”, J. Fourier Anal. Appl., 9:1 (2003), 1–37 | DOI | MR | Zbl

[12] Bennett G., Grosse-Erdmann K.-G., “Weighted Hardy inequalities for decreasing sequences and functions”, Math. Ann., 334:3 (2006), 489–531 | DOI | MR | Zbl

[13] Boas R.P., \textup {Jr.}, Integrability theorems for trigonometric transforms, Springer, Berlin, 1967 | MR | Zbl

[14] Carton-Lebrun C., Heinig H.P., “Weighted Fourier transform inequalities for radially decreasing functions”, SIAM J. Math. Anal., 23:3 (1992), 785–798 | DOI | MR | Zbl

[15] De Carli L., Gorbachev D., Tikhonov S., “Pitt inequalities and restriction theorems for the Fourier transform”, Rev. Mat. Iberoam., 33:3 (2017), 789–808 | DOI | MR | Zbl

[16] Debernardi A., “Weighted norm inequalities for generalized Fourier-type transforms and applications”, Publ. Mat., 64:1 (2020), 3–42 | DOI | MR | Zbl

[17] Debernardi A., “The Boas problem on Hankel transforms”, J. Fourier Anal. Appl, 25:6 (2019), 3310–3341 | DOI | MR | Zbl

[18] Domínguez Ó., Haroske D.D., Tikhonov S., “Embeddings and characterizations of Lipschitz spaces”, J. math. pures appl., 144 (2020), 69–105 ; arXiv: 1911.08369 [math.FA] | DOI | MR | Zbl

[19] Domínguez Ó., Tikhonov S., “Function spaces of logarithmic smoothness: Embeddings and characterizations”, Mem. Amer. Math. Soc. (to appear)

[20] Domínguez Ó., Veraar M., Extensions of the vector-valued Hausdorff–Young inequalities, E-print, 2019, arXiv: 1904.07930 [math.FA]

[21] Dyachenko M., Mukanov A., Tikhonov S., “Hardy–Littlewood theorems for trigonometric series with general monotone coefficients”, Stud. math., 250:3 (2020), 217–234 | DOI | MR | Zbl

[22] Dyachenko M., Nursultanov E., Kankenova A., “On summability of Fourier coefficients of functions from Lebesgue space”, J. Math. Anal. Appl., 419:2 (2014), 959–971 | DOI | MR | Zbl

[23] Dyachenko M., Tikhonov S., “Convergence of trigonometric series with general monotone coefficients”, C. r. Math. Acad. sci. Paris, 345:3 (2007), 123–126 | DOI | MR | Zbl

[24] Dyachenko M., Tikhonov S., “Integrability and continuity of functions represented by trigonometric series: Coefficients criteria”, Stud. math., 193:3 (2009), 285–306 | DOI | MR | Zbl

[25] A. Gogatishvili and V. D. Stepanov, “Reduction theorems for weighted integral inequalities on the cone of monotone functions”, Russ. Math. Surv., 68:4 (2013), 597–664 | DOI | MR | Zbl

[26] M. L. Gol'dman, “Estimates of norms of Hardy-type integral and discrete operators on cones of quasimonotone functions”, Dokl. Math., 63:2 (2001), 250–255 | MR | Zbl

[27] M. L. Goldman, “Sharp estimates for the norms of Hardy-type operators on the cones of quasimonotone functions”, Proc. Steklov Inst. Math., 232 (2001), 109–137 | MR | Zbl

[28] B. I. Golubov, A. V. Efimov, and V. A. Skvortsov, Walsh Series and Transforms: Theory and Applications, Kluwer, Dordrecht, 1991 | MR | MR | Zbl

[29] Gorbachev D., Liflyand E., Tikhonov S., “Weighted norm inequalities for integral transforms”, Indiana Univ. Math. J., 67:5 (2018), 1949–2003 | DOI | MR | Zbl

[30] Gorbachev D., Tikhonov S., “Moduli of smoothness and growth properties of Fourier transforms: Two-sided estimates”, J. Approx. Theory, 164:9 (2012), 1283–1312 | DOI | MR | Zbl

[31] Hardy G.H., Littlewood J.E., “Notes on the theory of series. XIII: Some new properties of Fourier constants”, J. London Math. Soc., 6 (1931), 3–9 | DOI | MR

[32] Heinig H., “Weighted norm inequalities for classes of operators”, Indiana Univ. Math. J., 33:4 (1984), 573–582 | DOI | MR | Zbl

[33] Jurkat W., Sampson G., “On rearrangement and weight inequalities for the Fourier transform”, Indiana Univ. Math. J., 33:2 (1984), 257–270 | DOI | MR | Zbl

[34] Kellogg C.N., “An extension of the Hausdorff–Young theorem”, Mich. Math. J., 18 (1971), 121–127 | DOI | MR | Zbl

[35] Konyushkov A.A., “Nailuchshie priblizheniya trigonometricheskimi polinomami i koeffitsienty Fure”, Mat. sb., 44:1 (1958), 53–84 | MR

[36] Kufner A., Persson L.-E., Weighted inequalities of Hardy type, World Scientific, Singapore, 2003 | MR | Zbl

[37] Liflyand E., Tikhonov S., “A concept of general monotonicity and applications”, Math. Nachr., 284:8–9 (2011), 1083–1098 | DOI | MR | Zbl

[38] Liflyand E., Tikhonov S., “Two-sided weighted Fourier inequalities”, Ann. Sc. Norm. Super. Pisa. Cl. Sci. Ser. 5, 11:2 (2012), 341–362 | MR | Zbl

[39] Muckenhoupt B., “Hardy's inequality with weights”, Stud. math., 44 (1972), 31–38 | DOI | MR | Zbl

[40] E. D. Nursultanov, “On the coefficients of multiple Fourier series in $L_p$-spaces”, Izv. Math., 64:1 (2000), 93–120 | DOI | MR | Zbl

[41] Nursultanov E., Tikhonov S., “Weighted Fourier inequalities in Lebesgue and Lorentz spaces”, J. Fourier Anal. Appl., 26:4 (2020), 57 | DOI | MR | Zbl

[42] Pitt H.R., “Theorems on Fourier series and power series”, Duke Math. J., 3:4 (1937), 747–755 | DOI | MR

[43] Rastegari J., Sinnamon G., “Weighted Fourier inequalities via rearrangements”, J. Fourier Anal. Appl., 24:5 (2018), 1225–1248 | DOI | MR | Zbl

[44] Sagher Y., “An application of interpolation theory to Fourier series”, Stud. math., 41 (1972), 169–181 | DOI | MR | Zbl

[45] Stein E.M., “Interpolation of linear operators”, Trans. Amer. Math. Soc., 83 (1956), 482–492 | DOI | MR | Zbl

[46] S. Yu. Tikhonov, “On the integrability of trigonometric series”, Math. Notes, 78:3–4 (2005), 437–442 | DOI | MR | Zbl

[47] Tikhonov S., “Trigonometric series with general monotone coefficients”, J. Math. Anal. Appl., 326:1 (2007), 721–735 | DOI | MR | Zbl

[48] Tikhonov S., “Best approximation and moduli of smoothness: Computation and equivalence theorems”, J. Approx. Theory, 153:1 (2008), 19–39 | DOI | MR | Zbl

[49] Ulyanov P.L., “Primenenie $A$-integrirovaniya k odnomu klassu trigonometricheskikh ryadov”, Mat. sb., 35:3 (1954), 469–490 | Zbl

[50] Young W.H., “On the Fourier series of bounded functions”, Proc. London Math. Soc., 12 (1913), 41–70 | DOI | MR | Zbl

[51] Yu D., Zhou P., Zhou S., “On $L^p$ integrability and convergence of trigonometric series”, Stud. Math., 182:3 (2007), 215–226 | DOI | MR | Zbl

[52] Zygmund A., Trigonometric series, v. 2, Univ. Press, Cambridge, 1959 ; Zigmund A., Trigonometricheskie ryady, v. 2, Mir, M., 1965; A. Zygmund, Trigonometric Series, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl | Zbl