Weighted Fourier Inequalities and Boundedness of Variation
Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 294-312

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the trigonometric series $\sum _{n=1}^\infty \lambda _n \cos nx$ and $\sum _{n=1}^\infty \lambda _n \sin nx$ with $\{\lambda _n\}$ being a sequence of bounded variation. Let $\psi $ denote the sum of such a series. We obtain necessary and sufficient conditions for the validity of the weighted Fourier inequality $\left (\int _0^\pi |\psi (x)|^q \omega (x)\,dx\right )^{1/q} \le C\!\left (\sum _{n=1}^\infty u_n\left (\sum _{k=n}^\infty |\lambda _{k}-\lambda _{k+1}|\right )^p \right )^{1/p}$, $0$, in terms of the weight $\omega $ and the weighted sequence $\{u_n\}$. Applications to the series with general monotone coefficients are given.
Keywords: Fourier series/transforms, weighted norm inequalities, Hardy–Littlewood type theorems, general monotone sequences.
@article{TRSPY_2021_312_a18,
     author = {Sergey Yu. Tikhonov},
     title = {Weighted {Fourier} {Inequalities} and {Boundedness} of {Variation}},
     journal = {Informatics and Automation},
     pages = {294--312},
     publisher = {mathdoc},
     volume = {312},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a18/}
}
TY  - JOUR
AU  - Sergey Yu. Tikhonov
TI  - Weighted Fourier Inequalities and Boundedness of Variation
JO  - Informatics and Automation
PY  - 2021
SP  - 294
EP  - 312
VL  - 312
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a18/
LA  - ru
ID  - TRSPY_2021_312_a18
ER  - 
%0 Journal Article
%A Sergey Yu. Tikhonov
%T Weighted Fourier Inequalities and Boundedness of Variation
%J Informatics and Automation
%D 2021
%P 294-312
%V 312
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a18/
%G ru
%F TRSPY_2021_312_a18
Sergey Yu. Tikhonov. Weighted Fourier Inequalities and Boundedness of Variation. Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 294-312. http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a18/