Sampling Discretization of Integral Norms of the Hyperbolic Cross Polynomials
Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 282-293.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to discretization of integral norms of functions from a given finite-dimensional subspace. We use recent general results on sampling discretization to derive a new Marcinkiewicz type discretization theorem for the multivariate trigonometric polynomials with frequencies from the hyperbolic crosses. It is shown that recently developed techniques allow us to improve the known results in this direction.
@article{TRSPY_2021_312_a17,
     author = {V. N. Temlyakov},
     title = {Sampling {Discretization} of {Integral} {Norms} of the {Hyperbolic} {Cross} {Polynomials}},
     journal = {Informatics and Automation},
     pages = {282--293},
     publisher = {mathdoc},
     volume = {312},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a17/}
}
TY  - JOUR
AU  - V. N. Temlyakov
TI  - Sampling Discretization of Integral Norms of the Hyperbolic Cross Polynomials
JO  - Informatics and Automation
PY  - 2021
SP  - 282
EP  - 293
VL  - 312
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a17/
LA  - ru
ID  - TRSPY_2021_312_a17
ER  - 
%0 Journal Article
%A V. N. Temlyakov
%T Sampling Discretization of Integral Norms of the Hyperbolic Cross Polynomials
%J Informatics and Automation
%D 2021
%P 282-293
%V 312
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a17/
%G ru
%F TRSPY_2021_312_a17
V. N. Temlyakov. Sampling Discretization of Integral Norms of the Hyperbolic Cross Polynomials. Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 282-293. http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a17/

[1] É. S. Belinskii, “Interpolation and integral norms of hyperbolic polynomials”, Math. Notes, 66:1 (1999), 16–23 | DOI | MR

[2] Bourgain J., Lindenstrauss J., Milman V., “Approximation of zonoids by zonotopes”, Acta math., 162:1–2 (1989), 73–141 | DOI | MR | Zbl

[3] Carl B., “Entropy numbers, $s$-numbers, and eigenvalue problems”, J. Funct. Anal., 41:3 (1981), 290–306 | DOI | MR | Zbl

[4] Dai F., Prymak A., Shadrin A., Temlyakov V., Tikhonov S., Sampling discretization of integral norms, E-print, 2020, arXiv: 2001.09320v1 [math.CA]

[5] Dai F., Prymak A., Shadrin A., Temlyakov V., Tikhonov S., Entropy numbers and Marcinkiewicz-type discretization theorem, E-print, 2020, arXiv: 2001.10636v1 [math.CA]

[6] F. Dai, A. Prymak, V. N. Temlyakov, and S. Yu. Tikhonov, “Integral norm discretization and related problems”, Russ. Math. Surv., 74:4 (2019), 579–630 | DOI | MR | Zbl

[7] Dũng D., Temlyakov V., Ullrich T., Hyperbolic cross approximation, Birkhäuser, Cham, 2018 ; arXiv: 1601.03978v2 [math.NA] | MR | Zbl

[8] Giné E., Zinn J., “Some limit theorems for empirical processes”, Ann. Probab., 12 (1984), 929–989 | DOI | MR | Zbl

[9] Hinrichs A., Prochno J., Vybíral J., “Entropy numbers of embeddings of Schatten classes”, J. Funct. Anal., 273:10 (2017), 3241–3261 ; arXiv: 1612.08105v1 [math.FA] | DOI | MR | Zbl

[10] B. S. Kashin and V. N. Temlyakov, “On a certain norm and related applications”, Math. Notes, 64:4 (1998), 551–554 | DOI | MR | Zbl

[11] Kashin B.S., Temlyakov V.N., “Ob odnoi norme i approksimatsionnykh kharakteristikakh klassov funktsii mnogikh peremennykh”, Metricheskaya teoriya funktsii i smezhnye voprosy analiza, AFTs, M., 1999, 69–99 ; Совр. математика. Фунд. напр., 25 (2007), 58–79 ; B. S. Kashin and V. N. Temlyakov, “On a norm and approximate characteristics of classes of multivariable functions”, J. Math. Sci., 155:1 (2008), 57–80 | MR | DOI | MR | Zbl

[12] Kashin B.S., Temlyakov V.N., “The volume estimates and their applications”, East J. Approx., 9:4 (2003), 469–485 | MR | Zbl

[13] B. S. Kashin and V. N. Temlyakov, “Observations on discretization of trigonometric polynomials with given spectrum”, Russ. Math. Surv., 73:6 (2018), 1128–1130 | DOI | MR | Zbl

[14] Konyagin S.V., Temlyakov V.N., “The entropy in learning theory. Error estimates”, Constr. Approx., 25:1 (2007), 1–27 | DOI | MR | Zbl

[15] Kosov E., Marcinkiewicz-type discretization of $L^p$-norms under the Nikolskii-type inequality assumption, E-print, 2020, arXiv: 2005.01674 [math.FA]

[16] Lorentz G.G., von Golitschek M., Makovoz Y., Constructive approximation: Advanced problems, Springer, Berlin, 1996 | MR | Zbl

[17] Marcus A.W., Spielman D.A., Srivastava N., “Interlacing families. II: Mixed characteristic polynomials and the Kadison–Singer problem”, Ann. Math. Ser. 2, 182:1 (2015), 327–350 | DOI | MR | Zbl

[18] Nitzan S., Olevskii A., Ulanovskii A., “Exponential frames on unbounded sets”, Proc. Amer. Math. Soc., 144:1 (2016), 109–118 | DOI | MR | Zbl

[19] Schütt C., “Entropy numbers of diagonal operators between symmetric Banach spaces”, J. Approx. Theory, 40:2 (1984), 121–128 | DOI | MR

[20] Talagrand M., Upper and lower bounds for stochastic processes: Modern methods and classical problems, Springer, Berlin, 2014 | MR | Zbl

[21] V. N. Temlyakov, “Approximation of periodic functions of several variables with bounded mixed derivative”, Proc. Steklov Inst. Math., 156 (1983), 255–283 | MR | Zbl | Zbl

[22] V. N. Temlyakov, Approximation of Functions with a Bounded Mixed Derivative, Proc. Steklov Inst. Math., 178, Am. Math. Soc., Providence, RI, 1989 | MR | Zbl

[23] Temlyakov V., Greedy approximation, Cambridge Monogr. Appl. Comput. Math., 20, Cambridge Univ. Press, Cambridge, 2011 | MR | Zbl

[24] Temlyakov V., “Constructive sparse trigonometric approximation for functions with small mixed smoothness”, Constr. Approx., 45:3 (2017), 467–495 | DOI | MR | Zbl

[25] Temlyakov V., “On the entropy numbers of the mixed smoothness function classes”, J. Approx. Theory, 217 (2017), 26–56 ; arXiv: 1602.08712v1 [math.NA] | DOI | MR | Zbl

[26] Temlyakov V.N., “The Marcinkiewicz-type discretization theorems for the hyperbolic cross polynomials”, Jaen J. Approx., 9:1–2 (2017), 37–63 ; arXiv: 1702.01617v2 [math.NA] | MR | Zbl

[27] Temlyakov V.N., “The Marcinkiewicz-type discretization theorems”, Constr. Approx., 48:2 (2018), 337–369 ; arXiv: 1703.03743v1 [math.NA] | DOI | MR | Zbl

[28] Temlyakov V., Multivariate approximation, Cambridge Monogr. Appl. Comput. Math., 32, Cambridge Univ. Press, Cambridge, 2018 | MR | Zbl

[29] A. Zygmund, Trigonometric Series, v. 1, 2, Univ. Press, Cambridge, 1959 | MR | Zbl