Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2021_312_a17, author = {V. N. Temlyakov}, title = {Sampling {Discretization} of {Integral} {Norms} of the {Hyperbolic} {Cross} {Polynomials}}, journal = {Informatics and Automation}, pages = {282--293}, publisher = {mathdoc}, volume = {312}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a17/} }
V. N. Temlyakov. Sampling Discretization of Integral Norms of the Hyperbolic Cross Polynomials. Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 282-293. http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a17/
[1] É. S. Belinskii, “Interpolation and integral norms of hyperbolic polynomials”, Math. Notes, 66:1 (1999), 16–23 | DOI | MR
[2] Bourgain J., Lindenstrauss J., Milman V., “Approximation of zonoids by zonotopes”, Acta math., 162:1–2 (1989), 73–141 | DOI | MR | Zbl
[3] Carl B., “Entropy numbers, $s$-numbers, and eigenvalue problems”, J. Funct. Anal., 41:3 (1981), 290–306 | DOI | MR | Zbl
[4] Dai F., Prymak A., Shadrin A., Temlyakov V., Tikhonov S., Sampling discretization of integral norms, E-print, 2020, arXiv: 2001.09320v1 [math.CA]
[5] Dai F., Prymak A., Shadrin A., Temlyakov V., Tikhonov S., Entropy numbers and Marcinkiewicz-type discretization theorem, E-print, 2020, arXiv: 2001.10636v1 [math.CA]
[6] F. Dai, A. Prymak, V. N. Temlyakov, and S. Yu. Tikhonov, “Integral norm discretization and related problems”, Russ. Math. Surv., 74:4 (2019), 579–630 | DOI | MR | Zbl
[7] Dũng D., Temlyakov V., Ullrich T., Hyperbolic cross approximation, Birkhäuser, Cham, 2018 ; arXiv: 1601.03978v2 [math.NA] | MR | Zbl
[8] Giné E., Zinn J., “Some limit theorems for empirical processes”, Ann. Probab., 12 (1984), 929–989 | DOI | MR | Zbl
[9] Hinrichs A., Prochno J., Vybíral J., “Entropy numbers of embeddings of Schatten classes”, J. Funct. Anal., 273:10 (2017), 3241–3261 ; arXiv: 1612.08105v1 [math.FA] | DOI | MR | Zbl
[10] B. S. Kashin and V. N. Temlyakov, “On a certain norm and related applications”, Math. Notes, 64:4 (1998), 551–554 | DOI | MR | Zbl
[11] Kashin B.S., Temlyakov V.N., “Ob odnoi norme i approksimatsionnykh kharakteristikakh klassov funktsii mnogikh peremennykh”, Metricheskaya teoriya funktsii i smezhnye voprosy analiza, AFTs, M., 1999, 69–99 ; Совр. математика. Фунд. напр., 25 (2007), 58–79 ; B. S. Kashin and V. N. Temlyakov, “On a norm and approximate characteristics of classes of multivariable functions”, J. Math. Sci., 155:1 (2008), 57–80 | MR | DOI | MR | Zbl
[12] Kashin B.S., Temlyakov V.N., “The volume estimates and their applications”, East J. Approx., 9:4 (2003), 469–485 | MR | Zbl
[13] B. S. Kashin and V. N. Temlyakov, “Observations on discretization of trigonometric polynomials with given spectrum”, Russ. Math. Surv., 73:6 (2018), 1128–1130 | DOI | MR | Zbl
[14] Konyagin S.V., Temlyakov V.N., “The entropy in learning theory. Error estimates”, Constr. Approx., 25:1 (2007), 1–27 | DOI | MR | Zbl
[15] Kosov E., Marcinkiewicz-type discretization of $L^p$-norms under the Nikolskii-type inequality assumption, E-print, 2020, arXiv: 2005.01674 [math.FA]
[16] Lorentz G.G., von Golitschek M., Makovoz Y., Constructive approximation: Advanced problems, Springer, Berlin, 1996 | MR | Zbl
[17] Marcus A.W., Spielman D.A., Srivastava N., “Interlacing families. II: Mixed characteristic polynomials and the Kadison–Singer problem”, Ann. Math. Ser. 2, 182:1 (2015), 327–350 | DOI | MR | Zbl
[18] Nitzan S., Olevskii A., Ulanovskii A., “Exponential frames on unbounded sets”, Proc. Amer. Math. Soc., 144:1 (2016), 109–118 | DOI | MR | Zbl
[19] Schütt C., “Entropy numbers of diagonal operators between symmetric Banach spaces”, J. Approx. Theory, 40:2 (1984), 121–128 | DOI | MR
[20] Talagrand M., Upper and lower bounds for stochastic processes: Modern methods and classical problems, Springer, Berlin, 2014 | MR | Zbl
[21] V. N. Temlyakov, “Approximation of periodic functions of several variables with bounded mixed derivative”, Proc. Steklov Inst. Math., 156 (1983), 255–283 | MR | Zbl | Zbl
[22] V. N. Temlyakov, Approximation of Functions with a Bounded Mixed Derivative, Proc. Steklov Inst. Math., 178, Am. Math. Soc., Providence, RI, 1989 | MR | Zbl
[23] Temlyakov V., Greedy approximation, Cambridge Monogr. Appl. Comput. Math., 20, Cambridge Univ. Press, Cambridge, 2011 | MR | Zbl
[24] Temlyakov V., “Constructive sparse trigonometric approximation for functions with small mixed smoothness”, Constr. Approx., 45:3 (2017), 467–495 | DOI | MR | Zbl
[25] Temlyakov V., “On the entropy numbers of the mixed smoothness function classes”, J. Approx. Theory, 217 (2017), 26–56 ; arXiv: 1602.08712v1 [math.NA] | DOI | MR | Zbl
[26] Temlyakov V.N., “The Marcinkiewicz-type discretization theorems for the hyperbolic cross polynomials”, Jaen J. Approx., 9:1–2 (2017), 37–63 ; arXiv: 1702.01617v2 [math.NA] | MR | Zbl
[27] Temlyakov V.N., “The Marcinkiewicz-type discretization theorems”, Constr. Approx., 48:2 (2018), 337–369 ; arXiv: 1703.03743v1 [math.NA] | DOI | MR | Zbl
[28] Temlyakov V., Multivariate approximation, Cambridge Monogr. Appl. Comput. Math., 32, Cambridge Univ. Press, Cambridge, 2018 | MR | Zbl
[29] A. Zygmund, Trigonometric Series, v. 1, 2, Univ. Press, Cambridge, 1959 | MR | Zbl