Sampling Discretization of Integral Norms of the Hyperbolic Cross Polynomials
Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 282-293

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to discretization of integral norms of functions from a given finite-dimensional subspace. We use recent general results on sampling discretization to derive a new Marcinkiewicz type discretization theorem for the multivariate trigonometric polynomials with frequencies from the hyperbolic crosses. It is shown that recently developed techniques allow us to improve the known results in this direction.
@article{TRSPY_2021_312_a17,
     author = {V. N. Temlyakov},
     title = {Sampling {Discretization} of {Integral} {Norms} of the {Hyperbolic} {Cross} {Polynomials}},
     journal = {Informatics and Automation},
     pages = {282--293},
     publisher = {mathdoc},
     volume = {312},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a17/}
}
TY  - JOUR
AU  - V. N. Temlyakov
TI  - Sampling Discretization of Integral Norms of the Hyperbolic Cross Polynomials
JO  - Informatics and Automation
PY  - 2021
SP  - 282
EP  - 293
VL  - 312
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a17/
LA  - ru
ID  - TRSPY_2021_312_a17
ER  - 
%0 Journal Article
%A V. N. Temlyakov
%T Sampling Discretization of Integral Norms of the Hyperbolic Cross Polynomials
%J Informatics and Automation
%D 2021
%P 282-293
%V 312
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a17/
%G ru
%F TRSPY_2021_312_a17
V. N. Temlyakov. Sampling Discretization of Integral Norms of the Hyperbolic Cross Polynomials. Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 282-293. http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a17/