Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2021_312_a15, author = {D. M. Stolyarov}, title = {Weakly {Canceling} {Operators} and {Singular} {Integrals}}, journal = {Informatics and Automation}, pages = {259--271}, publisher = {mathdoc}, volume = {312}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a15/} }
D. M. Stolyarov. Weakly Canceling Operators and Singular Integrals. Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 259-271. http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a15/
[1] Ayoush R., Stolyarov D.M., Wojciechowski M., “Sobolev martingales”, Rev. Mat. Iberoam., 2020 ; arXiv: 1811.08137 [math.CA] | DOI
[2] Ayoush R., Wojciechowski M., On dimension and regularity of bundle measures, E-print, 2017, arXiv: 1708.01458 [math.CA]
[3] O. V. Besov, V. P. Il'in, and P. I. Lizorkin, “$L_p$-estimates of a certain class of nonisotropic singular integrals”, Sov. Math., Dokl., 7 (1966), 1065–1069 | MR | Zbl
[4] O. V. Besov, V. P. Il'in, and S. M. Nikol'skii, Integral Representations of Functions and Imbedding Theorems, v. 1, 2, J. Wiley Sons, New York, 1978, 1979 | MR | Zbl
[5] O. V. Besov and P. I. Lizorkin, “Singular integral operators and sequences of convolutions in $L_p$ spaces”, Math. USSR, Sb., 2:1 (1967), 57–76 | DOI | MR
[6] Bourgain J., Brezis H., “On the equation $\operatorname {div} Y=f$ and application to control of phases”, J. Amer. Math. Soc., 16:2 (2002), 393–426 | DOI | MR
[7] Bourgain J., Brezis H., “New estimates for elliptic equations and Hodge type systems”, J. Eur. Math. Soc., 9:2 (2007), 277–315 | DOI | MR | Zbl
[8] Bousquet P., Van Schaftingen J., “Hardy–Sobolev inequalities for vector fields and canceling linear differential operators”, Indiana Univ. Math. J., 63:5 (2014), 1419–1445 | DOI | MR | Zbl
[9] Fabes E.B., Riviere N.M., “Singular integrals with mixed homogeneity”, Stud. math., 27 (1966), 19–38 | DOI | MR | Zbl
[10] S. V. Kislyakov, “Sobolev imbedding operators and the nonisomorphism of certain Banach spaces”, Funct. Anal. Appl., 9:4 (1975), 290–294 | DOI | MR
[11] S. V. Kislyakov and D. V. Maksimov, “An embedding theorem with anisotropy for vector fields”, J. Math. Sci., 234:3 (2018), 343–349 | DOI | MR | Zbl
[12] Kislyakov S.V., Maksimov D.V., Stolyarov D.M., “Differential expressions with mixed homogeneity and spaces of smooth functions they generate in arbitrary dimension”, J. Funct. Anal., 269:10 (2015), 3220–3263 | DOI | MR | Zbl
[13] Maz'ya V., “Bourgain–Brezis type inequality with explicit constants”, Interpolation theory and applications, Contemp. Math., 445, Amer. Math. Soc., Providence, RI, 2007, 247–252 | DOI | MR | Zbl
[14] Raiţă B., $L^1$-estimates for constant rank operators, E-print, 2018, arXiv: 1811.10057 [math.AP]
[15] Raiţă B., “Critical $\mathrm {L}^p$-differentiability of $\mathrm {BV}^{\mathbb {A}}$-maps and canceling operators”, Trans. Amer. Math. Soc., 372:10 (2019), 7297–7326 | DOI | MR | Zbl
[16] Raiţă B., Skorobogatova A., “Continuity and canceling operators of order $n$ on $\mathbb {R}^n$”, Calc. Var. Partial Diff. Eqns., 59:2 (2020), 85 | DOI | MR | Zbl
[17] Van Schaftingen J., “Estimates for $L^1$-vector fields”, C. r. Math. Acad. sci. Paris, 339:3 (2004), 181–186 | DOI | MR | Zbl
[18] Van Schaftingen J., “Estimates for $L^1$-vector fields under higher-order differential conditions”, J. Eur. Math. Soc., 10:4 (2008), 867–882 | MR | Zbl
[19] Van Schaftingen J., “Limiting Sobolev inequalities for vector fields and canceling linear differential operators”, J. Eur. Math. Soc., 15:3 (2013), 877–921 | DOI | MR | Zbl
[20] Van Schaftingen J., “Limiting Bourgain–Brezis estimates for systems of linear differential equations: Theme and variations”, J. Fixed Point Theory Appl., 15:2 (2014), 273–297 | DOI | MR | Zbl
[21] D. M. Stolyarov, “Bilinear embedding theorems for differential operators in $\mathbb {R}^2$”, J. Math. Sci., 209:5 (2015), 792–807 | DOI | MR | Zbl
[22] D. Stolyarov, “Martingale interpretation of weakly cancelling differential operators”, J. Math. Sci., 251:2 (2020), 286–290 | DOI | MR | Zbl