Weakly Canceling Operators and Singular Integrals
Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 259-271

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest an elementary harmonic analysis approach to canceling and weakly canceling differential operators, which allows us to extend these notions to the anisotropic setting and replace differential operators with Fourier multiplies with mild smoothness regularity. In this more general setting of anisotropic Fourier multipliers, we prove the inequality $\|f\|_{L_\infty } \lesssim \|Af\|_{L_1}$ if $A$ is a weakly canceling operator of order $d$ and the inequality $\|f\|_{L_2} \lesssim \|Af\|_{L_1}$ if $A$ is a canceling operator of order $d/2$, provided $f$ is a function of $d$ variables.
@article{TRSPY_2021_312_a15,
     author = {D. M. Stolyarov},
     title = {Weakly {Canceling} {Operators} and {Singular} {Integrals}},
     journal = {Informatics and Automation},
     pages = {259--271},
     publisher = {mathdoc},
     volume = {312},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a15/}
}
TY  - JOUR
AU  - D. M. Stolyarov
TI  - Weakly Canceling Operators and Singular Integrals
JO  - Informatics and Automation
PY  - 2021
SP  - 259
EP  - 271
VL  - 312
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a15/
LA  - ru
ID  - TRSPY_2021_312_a15
ER  - 
%0 Journal Article
%A D. M. Stolyarov
%T Weakly Canceling Operators and Singular Integrals
%J Informatics and Automation
%D 2021
%P 259-271
%V 312
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a15/
%G ru
%F TRSPY_2021_312_a15
D. M. Stolyarov. Weakly Canceling Operators and Singular Integrals. Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 259-271. http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a15/