Weakly Canceling Operators and Singular Integrals
Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 259-271.

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest an elementary harmonic analysis approach to canceling and weakly canceling differential operators, which allows us to extend these notions to the anisotropic setting and replace differential operators with Fourier multiplies with mild smoothness regularity. In this more general setting of anisotropic Fourier multipliers, we prove the inequality $\|f\|_{L_\infty } \lesssim \|Af\|_{L_1}$ if $A$ is a weakly canceling operator of order $d$ and the inequality $\|f\|_{L_2} \lesssim \|Af\|_{L_1}$ if $A$ is a canceling operator of order $d/2$, provided $f$ is a function of $d$ variables.
@article{TRSPY_2021_312_a15,
     author = {D. M. Stolyarov},
     title = {Weakly {Canceling} {Operators} and {Singular} {Integrals}},
     journal = {Informatics and Automation},
     pages = {259--271},
     publisher = {mathdoc},
     volume = {312},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a15/}
}
TY  - JOUR
AU  - D. M. Stolyarov
TI  - Weakly Canceling Operators and Singular Integrals
JO  - Informatics and Automation
PY  - 2021
SP  - 259
EP  - 271
VL  - 312
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a15/
LA  - ru
ID  - TRSPY_2021_312_a15
ER  - 
%0 Journal Article
%A D. M. Stolyarov
%T Weakly Canceling Operators and Singular Integrals
%J Informatics and Automation
%D 2021
%P 259-271
%V 312
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a15/
%G ru
%F TRSPY_2021_312_a15
D. M. Stolyarov. Weakly Canceling Operators and Singular Integrals. Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 259-271. http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a15/

[1] Ayoush R., Stolyarov D.M., Wojciechowski M., “Sobolev martingales”, Rev. Mat. Iberoam., 2020 ; arXiv: 1811.08137 [math.CA] | DOI

[2] Ayoush R., Wojciechowski M., On dimension and regularity of bundle measures, E-print, 2017, arXiv: 1708.01458 [math.CA]

[3] O. V. Besov, V. P. Il'in, and P. I. Lizorkin, “$L_p$-estimates of a certain class of nonisotropic singular integrals”, Sov. Math., Dokl., 7 (1966), 1065–1069 | MR | Zbl

[4] O. V. Besov, V. P. Il'in, and S. M. Nikol'skii, Integral Representations of Functions and Imbedding Theorems, v. 1, 2, J. Wiley Sons, New York, 1978, 1979 | MR | Zbl

[5] O. V. Besov and P. I. Lizorkin, “Singular integral operators and sequences of convolutions in $L_p$ spaces”, Math. USSR, Sb., 2:1 (1967), 57–76 | DOI | MR

[6] Bourgain J., Brezis H., “On the equation $\operatorname {div} Y=f$ and application to control of phases”, J. Amer. Math. Soc., 16:2 (2002), 393–426 | DOI | MR

[7] Bourgain J., Brezis H., “New estimates for elliptic equations and Hodge type systems”, J. Eur. Math. Soc., 9:2 (2007), 277–315 | DOI | MR | Zbl

[8] Bousquet P., Van Schaftingen J., “Hardy–Sobolev inequalities for vector fields and canceling linear differential operators”, Indiana Univ. Math. J., 63:5 (2014), 1419–1445 | DOI | MR | Zbl

[9] Fabes E.B., Riviere N.M., “Singular integrals with mixed homogeneity”, Stud. math., 27 (1966), 19–38 | DOI | MR | Zbl

[10] S. V. Kislyakov, “Sobolev imbedding operators and the nonisomorphism of certain Banach spaces”, Funct. Anal. Appl., 9:4 (1975), 290–294 | DOI | MR

[11] S. V. Kislyakov and D. V. Maksimov, “An embedding theorem with anisotropy for vector fields”, J. Math. Sci., 234:3 (2018), 343–349 | DOI | MR | Zbl

[12] Kislyakov S.V., Maksimov D.V., Stolyarov D.M., “Differential expressions with mixed homogeneity and spaces of smooth functions they generate in arbitrary dimension”, J. Funct. Anal., 269:10 (2015), 3220–3263 | DOI | MR | Zbl

[13] Maz'ya V., “Bourgain–Brezis type inequality with explicit constants”, Interpolation theory and applications, Contemp. Math., 445, Amer. Math. Soc., Providence, RI, 2007, 247–252 | DOI | MR | Zbl

[14] Raiţă B., $L^1$-estimates for constant rank operators, E-print, 2018, arXiv: 1811.10057 [math.AP]

[15] Raiţă B., “Critical $\mathrm {L}^p$-differentiability of $\mathrm {BV}^{\mathbb {A}}$-maps and canceling operators”, Trans. Amer. Math. Soc., 372:10 (2019), 7297–7326 | DOI | MR | Zbl

[16] Raiţă B., Skorobogatova A., “Continuity and canceling operators of order $n$ on $\mathbb {R}^n$”, Calc. Var. Partial Diff. Eqns., 59:2 (2020), 85 | DOI | MR | Zbl

[17] Van Schaftingen J., “Estimates for $L^1$-vector fields”, C. r. Math. Acad. sci. Paris, 339:3 (2004), 181–186 | DOI | MR | Zbl

[18] Van Schaftingen J., “Estimates for $L^1$-vector fields under higher-order differential conditions”, J. Eur. Math. Soc., 10:4 (2008), 867–882 | MR | Zbl

[19] Van Schaftingen J., “Limiting Sobolev inequalities for vector fields and canceling linear differential operators”, J. Eur. Math. Soc., 15:3 (2013), 877–921 | DOI | MR | Zbl

[20] Van Schaftingen J., “Limiting Bourgain–Brezis estimates for systems of linear differential equations: Theme and variations”, J. Fixed Point Theory Appl., 15:2 (2014), 273–297 | DOI | MR | Zbl

[21] D. M. Stolyarov, “Bilinear embedding theorems for differential operators in $\mathbb {R}^2$”, J. Math. Sci., 209:5 (2015), 792–807 | DOI | MR | Zbl

[22] D. Stolyarov, “Martingale interpretation of weakly cancelling differential operators”, J. Math. Sci., 251:2 (2020), 286–290 | DOI | MR | Zbl