On a Class of Functionals on a Weighted First-Order Sobolev Space on the Real Line
Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 236-250.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $g$ be a Lebesgue measurable function on an interval $I\subset \mathbb R$. We find conditions on $g$ under which the mapping $f\mapsto \int _I g(x)(Df)(x)\,dx$ is a continuous linear functional on a weighted first-order Sobolev space $W_{p,p}^1(I)$; we also obtain estimates for the norm of this functional in $[W_{p,p}^1(I)]^*$.
@article{TRSPY_2021_312_a13,
     author = {D. V. Prokhorov},
     title = {On a {Class} of {Functionals} on a {Weighted} {First-Order} {Sobolev} {Space} on the {Real} {Line}},
     journal = {Informatics and Automation},
     pages = {236--250},
     publisher = {mathdoc},
     volume = {312},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a13/}
}
TY  - JOUR
AU  - D. V. Prokhorov
TI  - On a Class of Functionals on a Weighted First-Order Sobolev Space on the Real Line
JO  - Informatics and Automation
PY  - 2021
SP  - 236
EP  - 250
VL  - 312
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a13/
LA  - ru
ID  - TRSPY_2021_312_a13
ER  - 
%0 Journal Article
%A D. V. Prokhorov
%T On a Class of Functionals on a Weighted First-Order Sobolev Space on the Real Line
%J Informatics and Automation
%D 2021
%P 236-250
%V 312
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a13/
%G ru
%F TRSPY_2021_312_a13
D. V. Prokhorov. On a Class of Functionals on a Weighted First-Order Sobolev Space on the Real Line. Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 236-250. http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a13/

[1] Oinarov R., “On weighted norm inequalities with three weights”, J. London Math. Soc. Ser. 2, 48:1 (1993), 103–116 | DOI | MR | Zbl

[2] R. Oinarov, “Boundedness of integral operators in weighted Sobolev spaces”, Izv. Math., 78:4 (2014), 836–853 | DOI | MR | Zbl

[3] Prokhorov D.V., “On a weighted Sobolev space on real line”, Eurasian Math. J., 8:2 (2017), 22–30 | MR | Zbl

[4] D. V. Prokhorov, Some properties of the weighted Sobolev space $W_{p,q}^1(I)$ on the real line, Preprint 2018/230, Comput. Cent. FEB RAS, Khabarovsk, 2018 http://ccfebras.ru/assets/files/preprint/preprint_230.pdf | Zbl

[5] D. V. Prokhorov, V. D. Stepanov, and E. P. Ushakova, Hardy–Steklov Integral Operators, Proc. Steklov Inst. Math., 300, no. Suppl. 2, 2018 ; 302, no. Suppl. 1, 2018 | MR | MR | Zbl | Zbl

[6] D. V. Prokhorov, V. D. Stepanov, and E. P. Ushakova, “On weighted Sobolev spaces on the real line”, Dokl. Math., 93:1 (2016), 78–81 | DOI | MR | Zbl

[7] Prokhorov D.V., Stepanov V.D., Ushakova E.P., “On associate spaces of weighted Sobolev space on the real line”, Math. Nachr., 290:5–6 (2017), 890–912 | DOI | MR | Zbl

[8] D. V. Prokhorov, V. D. Stepanov, and E. P. Ushakova, “Spaces associated with weighted Sobolev spaces on the real line”, Dokl. Math., 98:1 (2018), 373–376 | DOI | MR | Zbl

[9] D. V. Prokhorov, V. D. Stepanov, and E. P. Ushakova, “Characterization of the function spaces associated with weighted Sobolev spaces of the first order on the real line”, Russ. Math. Surv., 74:6 (2019), 1075–1115 | DOI | MR | Zbl

[10] V. D. Stepanov and E. P. Ushakova, “Hardy–Steklov operators and the duality principle in weighted first-order Sobolev spaces on the real axis”, Math. Notes, 105:1–2 (2019), 91–103 | DOI | MR | Zbl