On a Class of Functionals on a Weighted First-Order Sobolev Space on the Real Line
Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 236-250
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $g$ be a Lebesgue measurable function on an interval $I\subset \mathbb R$. We find conditions on $g$ under which the mapping $f\mapsto \int _I g(x)(Df)(x)\,dx$ is a continuous linear functional on a weighted first-order Sobolev space $W_{p,p}^1(I)$; we also obtain estimates for the norm of this functional in $[W_{p,p}^1(I)]^*$.
@article{TRSPY_2021_312_a13,
author = {D. V. Prokhorov},
title = {On a {Class} of {Functionals} on a {Weighted} {First-Order} {Sobolev} {Space} on the {Real} {Line}},
journal = {Informatics and Automation},
pages = {236--250},
publisher = {mathdoc},
volume = {312},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a13/}
}
D. V. Prokhorov. On a Class of Functionals on a Weighted First-Order Sobolev Space on the Real Line. Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 236-250. http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a13/