Kolmogorov Widths of the Besov Classes $B^1_{1,\theta }$ and Products of Octahedra
Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 224-235.

Voir la notice de l'article provenant de la source Math-Net.Ru

We find the decay orders of the Kolmogorov widths of some Besov classes related to $W^1_1$ (the behavior of the widths for the class $W^1_1$ remains unknown): $d_n(B^1_{1,\theta }[0,1],L_q[0,1])\asymp n^{-1/2}\log ^{\max \{1/2,1-1/\theta \}}n$ for $2$ and $1\le \theta \le \infty $. The proof relies on the lower bound for the width of a product of octahedra in a special norm (maximum of two weighted $\ell _{q_i}$ norms). This bound generalizes B. S. Kashin's theorem on the widths of octahedra in $\ell _q$.
@article{TRSPY_2021_312_a12,
     author = {Yuri V. Malykhin},
     title = {Kolmogorov {Widths} of the {Besov} {Classes} $B^1_{1,\theta }$ and {Products} of {Octahedra}},
     journal = {Informatics and Automation},
     pages = {224--235},
     publisher = {mathdoc},
     volume = {312},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a12/}
}
TY  - JOUR
AU  - Yuri V. Malykhin
TI  - Kolmogorov Widths of the Besov Classes $B^1_{1,\theta }$ and Products of Octahedra
JO  - Informatics and Automation
PY  - 2021
SP  - 224
EP  - 235
VL  - 312
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a12/
LA  - ru
ID  - TRSPY_2021_312_a12
ER  - 
%0 Journal Article
%A Yuri V. Malykhin
%T Kolmogorov Widths of the Besov Classes $B^1_{1,\theta }$ and Products of Octahedra
%J Informatics and Automation
%D 2021
%P 224-235
%V 312
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a12/
%G ru
%F TRSPY_2021_312_a12
Yuri V. Malykhin. Kolmogorov Widths of the Besov Classes $B^1_{1,\theta }$ and Products of Octahedra. Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 224-235. http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a12/

[1] Belinskii E.S., “Priblizhenie periodicheskikh funktsii “plavayuschei” sistemoi eksponent i trigonometricheskie poperechniki”, Issledovaniya po teorii funktsii mnogikh veschestvennykh peremennykh, Yarosl. gos. un-t, Yaroslavl, 1984, 10–24 | MR

[2] O. V. Besov, “Continuation of some classes of differentiable functions beyond the boundary of a region”, Proc. Steklov Inst. Math., 77 (1967), 37–48 | MR | Zbl

[3] DeVore R.A., Lorentz G.G., Constructive approximation, Grundl. Math. Wiss., 303, Springer, Berlin, 1993 | MR | Zbl

[4] D. Zung (Dung), “Approximation by trigonometric polynomials of functions of several variables on the torus”, Math. USSR, Sb., 59:1 (1988), 247–267 | DOI | MR | Zbl | Zbl

[5] Dũng D., Temlyakov V., Ullrich T., Hyperbolic cross approximation, Birkhäuser, Cham, 2018 | MR | Zbl

[6] E. M. Galeev, “Kolmogorov widths of classes of periodic functions of one and several variables”, Math. USSR, Izv., 36:2 (1991), 435–448 | DOI | MR | Zbl

[7] E. M. Galeev, “Widths of the Besov classes $B^r_{p,\theta }(\mathbb T^d)$”, Math. Notes, 69:5–6 (2001), 605–613 | DOI | MR | Zbl

[8] Garrigós G., Seeger A., Ullrich T., “Basis properties of the Haar system in limiting Besov spaces”, Geometric aspects of harmonic analysis, Springer INdAM Ser., 45, Springer, Cham, 2021; arXiv: 1901.09117 [math.CA]

[9] Haroske D., Skrzypczak L., “Entropy and approximation numbers of embeddings of function spaces with Muckenhoupt weights. I”, Rev. Mat. Complut., 21:1 (2008), 135–177 | DOI | MR | Zbl

[10] R. S. Ismagilov, “On $n$-dimensional diameters of compacts in a Hilbert space”, Funct. Anal. Appl., 2:2 (1968), 125–132 | DOI | MR | Zbl

[11] Kashin B.S., “O nekotorykh svoistvakh matrits ogranichennykh operatorov iz prostranstva $\ell _2^n$ v $\ell _2^m$”, Izv. AN ArmSSR. Matematika, 15:5 (1980), 379–394 | MR | Zbl

[12] B. S. Kashin, Yu. V. Malykhin, and K. S. Ryutin, “Kolmogorov width and approximate rank”, Proc. Steklov Inst. Math., 303 (2018), 140–153 | DOI | MR | Zbl

[13] E. D. Kulanin, “On the diameters of a class of functions of bounded variation in the space $L^q(0,1)$, $2\infty $”, Russ. Math. Surv., 38:5 (1983), 146–147 | DOI | MR | Zbl

[14] Lorentz G.G., von Golitschek M., Makovoz Y., Constructive approximation: Advanced problems, Springer, Berlin, 1996 | MR | Zbl

[15] Yu. V. Malykhin and K. S. Ryutin, “The product of octahedra is badly approximated in the $\ell _{2,1}$-metric”, Math. Notes, 101:1–2 (2017), 94–99 | DOI | MR | Zbl

[16] Romanyuk A.S., “Approximation of the Besov classes of periodic functions of several variables in a space $L_q$”, Ukr. Math. J., 43:10 (1991), 1297–1306 | DOI | MR | Zbl

[17] Triebel H., Theory of function spaces. III, Monogr. Math., 100, Birkhäuser, Basel, 2006 | MR | Zbl

[18] Triebel H., Function spaces and wavelets on domains, EMS Tracts Math., 7, Eur. Math. Soc., Zürich, 2008 | MR | Zbl

[19] Wojtaszczyk P., A mathematical introduction to wavelets, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl