Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2021_312_a12, author = {Yuri V. Malykhin}, title = {Kolmogorov {Widths} of the {Besov} {Classes} $B^1_{1,\theta }$ and {Products} of {Octahedra}}, journal = {Informatics and Automation}, pages = {224--235}, publisher = {mathdoc}, volume = {312}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a12/} }
Yuri V. Malykhin. Kolmogorov Widths of the Besov Classes $B^1_{1,\theta }$ and Products of Octahedra. Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 224-235. http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a12/
[1] Belinskii E.S., “Priblizhenie periodicheskikh funktsii “plavayuschei” sistemoi eksponent i trigonometricheskie poperechniki”, Issledovaniya po teorii funktsii mnogikh veschestvennykh peremennykh, Yarosl. gos. un-t, Yaroslavl, 1984, 10–24 | MR
[2] O. V. Besov, “Continuation of some classes of differentiable functions beyond the boundary of a region”, Proc. Steklov Inst. Math., 77 (1967), 37–48 | MR | Zbl
[3] DeVore R.A., Lorentz G.G., Constructive approximation, Grundl. Math. Wiss., 303, Springer, Berlin, 1993 | MR | Zbl
[4] D. Zung (Dung), “Approximation by trigonometric polynomials of functions of several variables on the torus”, Math. USSR, Sb., 59:1 (1988), 247–267 | DOI | MR | Zbl | Zbl
[5] Dũng D., Temlyakov V., Ullrich T., Hyperbolic cross approximation, Birkhäuser, Cham, 2018 | MR | Zbl
[6] E. M. Galeev, “Kolmogorov widths of classes of periodic functions of one and several variables”, Math. USSR, Izv., 36:2 (1991), 435–448 | DOI | MR | Zbl
[7] E. M. Galeev, “Widths of the Besov classes $B^r_{p,\theta }(\mathbb T^d)$”, Math. Notes, 69:5–6 (2001), 605–613 | DOI | MR | Zbl
[8] Garrigós G., Seeger A., Ullrich T., “Basis properties of the Haar system in limiting Besov spaces”, Geometric aspects of harmonic analysis, Springer INdAM Ser., 45, Springer, Cham, 2021; arXiv: 1901.09117 [math.CA]
[9] Haroske D., Skrzypczak L., “Entropy and approximation numbers of embeddings of function spaces with Muckenhoupt weights. I”, Rev. Mat. Complut., 21:1 (2008), 135–177 | DOI | MR | Zbl
[10] R. S. Ismagilov, “On $n$-dimensional diameters of compacts in a Hilbert space”, Funct. Anal. Appl., 2:2 (1968), 125–132 | DOI | MR | Zbl
[11] Kashin B.S., “O nekotorykh svoistvakh matrits ogranichennykh operatorov iz prostranstva $\ell _2^n$ v $\ell _2^m$”, Izv. AN ArmSSR. Matematika, 15:5 (1980), 379–394 | MR | Zbl
[12] B. S. Kashin, Yu. V. Malykhin, and K. S. Ryutin, “Kolmogorov width and approximate rank”, Proc. Steklov Inst. Math., 303 (2018), 140–153 | DOI | MR | Zbl
[13] E. D. Kulanin, “On the diameters of a class of functions of bounded variation in the space $L^q(0,1)$, $2\infty $”, Russ. Math. Surv., 38:5 (1983), 146–147 | DOI | MR | Zbl
[14] Lorentz G.G., von Golitschek M., Makovoz Y., Constructive approximation: Advanced problems, Springer, Berlin, 1996 | MR | Zbl
[15] Yu. V. Malykhin and K. S. Ryutin, “The product of octahedra is badly approximated in the $\ell _{2,1}$-metric”, Math. Notes, 101:1–2 (2017), 94–99 | DOI | MR | Zbl
[16] Romanyuk A.S., “Approximation of the Besov classes of periodic functions of several variables in a space $L_q$”, Ukr. Math. J., 43:10 (1991), 1297–1306 | DOI | MR | Zbl
[17] Triebel H., Theory of function spaces. III, Monogr. Math., 100, Birkhäuser, Basel, 2006 | MR | Zbl
[18] Triebel H., Function spaces and wavelets on domains, EMS Tracts Math., 7, Eur. Math. Soc., Zürich, 2008 | MR | Zbl
[19] Wojtaszczyk P., A mathematical introduction to wavelets, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl