Kolmogorov Widths of the Besov Classes $B^1_{1,\theta }$ and Products of Octahedra
Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 224-235
Voir la notice de l'article provenant de la source Math-Net.Ru
We find the decay orders of the Kolmogorov widths of some Besov classes related to $W^1_1$ (the behavior of the widths for the class $W^1_1$ remains unknown): $d_n(B^1_{1,\theta }[0,1],L_q[0,1])\asymp n^{-1/2}\log ^{\max \{1/2,1-1/\theta \}}n$ for $2$ and $1\le \theta \le \infty $. The proof relies on the lower bound for the width of a product of octahedra in a special norm (maximum of two weighted $\ell _{q_i}$ norms). This bound generalizes B. S. Kashin's theorem on the widths of octahedra in $\ell _q$.
@article{TRSPY_2021_312_a12,
author = {Yuri V. Malykhin},
title = {Kolmogorov {Widths} of the {Besov} {Classes} $B^1_{1,\theta }$ and {Products} of {Octahedra}},
journal = {Informatics and Automation},
pages = {224--235},
publisher = {mathdoc},
volume = {312},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a12/}
}
Yuri V. Malykhin. Kolmogorov Widths of the Besov Classes $B^1_{1,\theta }$ and Products of Octahedra. Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 224-235. http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a12/