On the Boundedness of Integral Operators in Weighted Grand Morrey Spaces
Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 203-215.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain boundedness criteria in terms of Muckenhoupt weights for the Hardy–Littlewood maximal operator and Riesz transforms in weighted grand Morrey spaces $M^{p),q,\varphi }_w$. We also consider some structural properties of the spaces $M^{p),q,\varphi }_w$. The spaces are defined, generally speaking, on spaces of homogeneous type. The results are new even in the case of a special function $\varphi $.
@article{TRSPY_2021_312_a10,
     author = {V. M. Kokilashvili and A. N. Meskhi},
     title = {On the {Boundedness} of {Integral} {Operators} in {Weighted} {Grand} {Morrey} {Spaces}},
     journal = {Informatics and Automation},
     pages = {203--215},
     publisher = {mathdoc},
     volume = {312},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a10/}
}
TY  - JOUR
AU  - V. M. Kokilashvili
AU  - A. N. Meskhi
TI  - On the Boundedness of Integral Operators in Weighted Grand Morrey Spaces
JO  - Informatics and Automation
PY  - 2021
SP  - 203
EP  - 215
VL  - 312
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a10/
LA  - ru
ID  - TRSPY_2021_312_a10
ER  - 
%0 Journal Article
%A V. M. Kokilashvili
%A A. N. Meskhi
%T On the Boundedness of Integral Operators in Weighted Grand Morrey Spaces
%J Informatics and Automation
%D 2021
%P 203-215
%V 312
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a10/
%G ru
%F TRSPY_2021_312_a10
V. M. Kokilashvili; A. N. Meskhi. On the Boundedness of Integral Operators in Weighted Grand Morrey Spaces. Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 203-215. http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a10/

[1] Adams D.R., Morrey spaces, Birkhäuser, Cham, 2015 | MR | Zbl

[2] Coifman R.R., Weiss G., Analyse harmonique non-commutative sur certains espaces homogènes. Etude de certaines intégrales singulières, Lect. Notes Math., 242, Springer, Berlin, 1971 | DOI | MR

[3] Duoandikoetxea X., Rosental M., “Extension and boundedness of operators on Morrey spaces from extrapolation techniques and embeddings”, J. Geom. Anal., 28:4 (2018), 3081–3108 | DOI | MR | Zbl

[4] Duoandikoetxea X., Rosental M., “Boundedness properties in a family of weighted Morrey spaces with emphasis on power weights”, J. Funct. Anal., 279:8 (2020), 108687 ; arXiv: 1910.13902 [math.FA] | DOI | MR | Zbl

[5] Fiorenza A., Gupta B., Jain P., “The maximal theorem for weighted grand Lebesgue spaces”, Stud. math., 188:2 (2008), 123–133 | DOI | MR | Zbl

[6] Folland G.B., Stein E.M., Hardy spaces on homogeneous groups, Math. Notes, 28, Princeton Univ. Press, Princeton, NJ, 1982 | MR | Zbl

[7] Fujii N., “Weighted bounded mean oscillation and singular integrals”, Math. Japon., 22:5 (1978), 529–534 | MR | Zbl

[8] García-Cuerva J., Rubio de Francia J.L., Weighted norm inequalities and related topics, North-Holland Math. Stud., 116, North-Holland, Amsterdam, 1985 | MR | Zbl

[9] Ho K.-P., “Definability of singular integral operators on Morrey–Banach spaces”, J. Math. Soc. Japan, 72:1 (2020), 155–170 | MR | Zbl

[10] Hruščev S.V., “A description of weights satisfying the $A_\infty $ condition of Muckenhoupt”, Proc. Amer. Math. Soc., 90:2 (1984), 253–257 | MR | Zbl

[11] Hytönen T., Pérez C., Rela E., “Sharp reverse Hölder property for $A_\infty $ weights on spaces of homogeneous type”, J. Funct. Anal., 263:12 (2012), 3883–3899 | DOI | MR | Zbl

[12] V. M. Kokilashvili and A. N. Meskhi, “Weighted extrapolation in Iwaniec–Sbordone spaces. Applications to integral operators and approximation theory”, Proc. Steklov Inst. Math., 293 (2016), 161–185 | DOI | MR | Zbl

[13] Kokilashvili V., Meskhi A., “The boundedness of sublinear operators in weighted Morrey spaces defined on spaces of homogeneous type”, Function spaces and inequalities, Springer Proc. Math. Stat., 206, ed. by P. Jain, H.-J. Schmeisser, Springer, Singapore, 2017, 193–211 | MR | Zbl

[14] V. Kokilashvili, A. Meskhi, and H. Rafeiro, “Boundedness of sublinear operators in weighted grand Morrey spaces”, Math. Notes, 102:5–6 (2017), 664–676 | DOI | MR | Zbl

[15] Kokilashvili V., Meskhi A., Rafeiro H., Samko S., Integral operators in non-standard function spaces, v. 2, Variable exponent Hölder, Morrey–Campanato and grand spaces, Birkhäuser/Springer, Basel, 2016 | MR

[16] Kokilashvili V., Meskhi A., Ragusa M.A., “Weighted extrapolation in grand Morrey spaces and applications to partial differential equations”, Rend. Lincei. Mat. Appl., 30:1 (2019), 67–92 | DOI | MR | Zbl

[17] Komori Y., Shirai S., “Weighted Morrey spaces and a singular integral operator”, Math. Nachr., 282:2 (2009), 219–231 | DOI | MR | Zbl

[18] Liu Y., Yuan W., “Interpolation and duality of generalized grand Morrey spaces on quasi-metric measure spaces”, Czech. Math. J., 67:3 (2017), 715–732 | DOI | MR | Zbl

[19] Macías R.A., Segovia C., “Lipschitz functions on spaces of homogeneous type”, Adv. Math., 33:3 (1979), 257–270 | DOI | MR | Zbl

[20] Meskhi A., “Maximal functions, potentials and singular integrals in grand Morrey spaces”, Complex Var. Elliptic Eqns., 56:10–11 (2011), 1003–1019 | DOI | MR | Zbl

[21] Meskhi A., Sawano Y., “Density, duality and preduality in grand variable exponent Lebesgue and Morrey spaces”, Mediterr. J. Math., 15:3 (2018), 100 | DOI | MR | Zbl

[22] Mustafayev R.Ch., “On boundedness of sublinear operators in weighted Morrey spaces”, Azerb. J. Math., 2:1 (2012), 66–79 | MR | Zbl

[23] Nakamura S., Sawano Y., “The singular integral operator and its commutator on weighted Morrey spaces”, Collect. Math., 68:2 (2017), 145–174 | DOI | MR | Zbl

[24] Nakamura S., Sawano Y., Tanaka H., “The fractional operators on weighted Morrey spaces”, J. Geom Anal., 28:2 (2018), 1502–1524 | DOI | MR | Zbl

[25] Rafeiro H., “A note on boundedness of operators in grand grand Morrey spaces”, Advances in harmonic analysis and operator theory: The Stefan Samko anniversary volume, ed. by A. Almeida, L. Castro, F.-O. Speck, Birkhäuser, Basel, 2013, 349–356 | MR | Zbl

[26] Rosental M., Schmeisser H.-J., “The boundedness of operators in Muckenhoupt weighted Morrey spaces via extrapolation techniques and duality”, Rev. Mat. Complut., 29:3 (2016), 623–657 | DOI | MR

[27] Samko N., “Weighted Hardy and singular operators in Morrey spaces”, J. Math. Anal. Appl., 350:1 (2009), 56–72 | DOI | MR | Zbl

[28] Samko N., “On a Muckenhoupt-type condition for Morrey spaces”, Mediterr. J. Math., 10:2 (2013), 941–951 | DOI | MR | Zbl

[29] Sawano Y., Tanaka H., “Predual spaces of Morrey spaces with non-doubling measures”, Tokyo J. Math., 32:2 (2009), 471–486 | DOI | MR | Zbl

[30] Shi S., Fu Z., Zhao F., “Estimates for operators on weighted Morrey spaces and their applications to nondivergence elliptic equations”, J. Inequal. Appl., 2013 (2013), 390 | DOI | MR

[31] Tanaka H., “Two-weight norm inequalities on Morrey spaces”, Ann. Acad. Sci. Fenn. Math., 40:2 (2015), 773–791 | DOI | MR | Zbl

[32] Wang D., Zhou J., Chen W., “Another characterizations of Muckenhoupt $A_p$ class”, Acta math. sci. Ser. B. Engl. Ed., 37:6 (2017), 1761–1774 | DOI | MR | Zbl

[33] Zorko C.T., “Morrey space”, Proc. Am. Math. Soc., 98 (1986), 586–592 | DOI | MR | Zbl