On the Boundedness of Integral Operators in Weighted Grand Morrey Spaces
Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 203-215

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain boundedness criteria in terms of Muckenhoupt weights for the Hardy–Littlewood maximal operator and Riesz transforms in weighted grand Morrey spaces $M^{p),q,\varphi }_w$. We also consider some structural properties of the spaces $M^{p),q,\varphi }_w$. The spaces are defined, generally speaking, on spaces of homogeneous type. The results are new even in the case of a special function $\varphi $.
@article{TRSPY_2021_312_a10,
     author = {V. M. Kokilashvili and A. N. Meskhi},
     title = {On the {Boundedness} of {Integral} {Operators} in {Weighted} {Grand} {Morrey} {Spaces}},
     journal = {Informatics and Automation},
     pages = {203--215},
     publisher = {mathdoc},
     volume = {312},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a10/}
}
TY  - JOUR
AU  - V. M. Kokilashvili
AU  - A. N. Meskhi
TI  - On the Boundedness of Integral Operators in Weighted Grand Morrey Spaces
JO  - Informatics and Automation
PY  - 2021
SP  - 203
EP  - 215
VL  - 312
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a10/
LA  - ru
ID  - TRSPY_2021_312_a10
ER  - 
%0 Journal Article
%A V. M. Kokilashvili
%A A. N. Meskhi
%T On the Boundedness of Integral Operators in Weighted Grand Morrey Spaces
%J Informatics and Automation
%D 2021
%P 203-215
%V 312
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a10/
%G ru
%F TRSPY_2021_312_a10
V. M. Kokilashvili; A. N. Meskhi. On the Boundedness of Integral Operators in Weighted Grand Morrey Spaces. Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 203-215. http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a10/