Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2021_312_a1, author = {D. B. Bazarkhanov}, title = {Optimal {Cubature} {Formulas} on {Classes} of {Periodic} {Functions} in {Several} {Variables}}, journal = {Informatics and Automation}, pages = {22--42}, publisher = {mathdoc}, volume = {312}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a1/} }
D. B. Bazarkhanov. Optimal Cubature Formulas on Classes of Periodic Functions in Several Variables. Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 22-42. http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a1/
[1] Bakhvalov N.S., “O priblizhennom vychislenii kratnykh integralov”, Vestn. Mosk. un-ta. Matematika, mekhanika, astronomiya, fizika, khimiya, 1959, no. 4, 3–18
[2] Bakhvalov N.S., “Ob optimalnykh otsenkakh skhodimosti kvadraturnykh protsessov i metodov integrirovaniya tipa Monte-Karlo na klassakh funktsii”, ZhVMiMF, 4:4 (dop.) (1964), 5–63 | MR | Zbl
[3] N. S. Bakhvalov, “A lower bound for the asymptotic characteristics of classes of functions with dominating mixed derivative”, Math. Notes, 12:6 (1972), 833–838 | DOI | MR | Zbl
[4] D. B. Bazarkhanov, “Characterizations of the Nikol'skii–Besov and Lizorkin–Triebel function spaces of mixed smoothness”, Proc. Steklov Inst. Math., 243 (2003), 46–58 | MR | Zbl
[5] D. B. Bazarkhanov, “Equivalent (quasi)norms for certain function spaces of generalized mixed smoothness”, Proc. Steklov Inst. Math., 248 (2005), 21–34 | MR | Zbl
[6] Bazarkhanov D.B., “Prostranstva funktsii peremennoi smeshannoi gladkosti. I”, Mat. zhurn. (Almaty), 6:4 (2006), 32–40 | MR
[7] Bazarkhanov D.B., “Prostranstva funktsii peremennoi smeshannoi gladkosti. II”, Mat. zhurn. (Almaty), 7:3 (2007), 16–27 | MR | Zbl
[8] D. B. Bazarkhanov, “Wavelet approximation and Fourier widths of classes of periodic functions of several variables. I”, Proc. Steklov Inst. Math., 269 (2010), 2–24 | DOI | MR | Zbl
[9] Bazarkhanov D.B., “Predstavleniya i kharakterizatsii nekotorykh funktsionalnykh prostranstv”, Mat. zhurn. (Almaty), 12:3 (2012), 43–52
[10] D. B. Bazarkhanov, “Nonlinear approximations of classes of periodic functions of many variables”, Proc. Steklov Inst. Math., 284 (2014), 2–31 | DOI | MR | Zbl
[11] Bazarkhanov D.B., “Optimal numerical integration on classes of smooth functions in several variables”, Kazakh Math. J., 20:3 (2020), 101–110
[12] O. V. Besov, “Interpolation, embedding, and extension of spaces of functions of variable smoothness”, Proc. Steklov Inst. Math., 248 (2005), 47–58 | MR | Zbl
[13] O. V. Besov, V. P. Il'in, and S. M. Nikol'skii, Integral Representations of Functions and Imbedding Theorems, J. Wiley Sons, New York, 1979 | MR | Zbl
[14] Bykovskii V.A., “Ekstremalnye kubaturnye formuly dlya anizotropnykh klassov”, Dalnevost. mat. zhurn., 19:1 (2019), 10–19 | MR | Zbl
[15] V. V. Dubinin, “Cubature formulas for classes of functions with bounded mixed difference”, Sb. Math., 76:2 (1993), 283–292 | DOI | MR | Zbl
[16] V. V. Dubinin, “Cubature formulae for Besov classes”, Izv. Math., 61:2 (1997), 259–283 | DOI | MR | Zbl
[17] Dũng D., Temlyakov V., Ullrich T., Hyperbolic cross approximation, Birkhäuser, Cham, 2018 | MR | Zbl
[18] Fefferman C., Stein E.M., “Some maximal inequalities”, Amer. J. Math., 93 (1971), 107–115 | DOI | MR | Zbl
[19] K. K. Frolov, “Upper error bounds for quadrature formulas on function classes”, Sov. Math., Dokl., 17 (1977), 1665–1669 | MR | Zbl
[20] P. M. Gruber and C. G. Lekkerkerker, Geometry of Numbers, North-Holland Math. Libr., 37, North-Holland, Amsterdam, 1987 | MR | Zbl
[21] Hlawka E., “Zur angenäherten Berechnung mehrfacher Integrale”, Monatsh. Math., 66 (1962), 140–151 | DOI | MR | Zbl
[22] G. A. Kalyabin, “Theorems on extension, multipliers and diffeomorphisms for generalized Sobolev–Liouville classes in domains with a Lipschitz boundary”, Proc. Steklov Inst. Math., 172 (1987), 191–205 | MR | Zbl | Zbl
[23] N. M. Korobov, “Approximate calculation of multiple integrals”, Dokl. Akad. Nauk SSSR, 124:6 (1959), 1207–1210 | MR | Zbl
[24] Nguyen V.K., Ullrich M., Ullrich T., “Change of variable in spaces of mixed smoothness and numerical integration of multivariate functions on the unit cube”, Constr. Approx., 46:1 (2017), 69–108 | DOI | MR | Zbl
[25] V. S. Rychkov, “On a theorem of Bui, Paluszyński, and Taibleson”, Proc. Steklov Inst. Math., 227 (1999), 280–292 | MR | Zbl
[26] Rychkov V.S., “On restrictions and extensions of the Besov and Triebel–Lizorkin spaces with respect to Lipschitz domains”, J. London Math. Soc., 60:1 (1999), 237–257 | DOI | MR | Zbl
[27] Schmeisser H.-J., Triebel H., Topics in Fourier analysis and function spaces, J. Wiley Sons, Chichester, 1987 | MR | Zbl
[28] M. M. Skriganov, “Constructions of uniform distributions in terms of geometry of numbers”, St. Petersburg Math. J., 6:3 (1995), 635–664 | MR | Zbl
[29] S. L. Sobolev, Cubature Formulas and Modern Analysis: An Introduction, Gordon and Breach Sci. Publ., Montreux, 1992 | MR | MR | Zbl
[30] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, NJ, 1971 | MR | Zbl
[31] V. N. Temlyakov, “On a way of obtaining lower estimates for the errors of quadrature formulas”, Math. USSR, Sb., 71:1 (1992), 247–257 | DOI | MR | Zbl
[32] V. N. Temlyakov, “Error estimates for Fibonacci quadrature formulas for classes of functions with bounded mixed derivative”, Proc. Steklov Inst. Math., 200 (1993), 359–367 | MR | Zbl
[33] V. N. Temlyakov, “On error estimates for cubature formulas”, Proc. Steklov Inst. Math., 207 (1995), 299–309 | MR | Zbl
[34] Temlyakov V., Multivariate approximation, Cambridge Univ. Press, Cambridge, 2018 | MR | Zbl
[35] Triebel H., Theory of function spaces II, Birkhäuser, Basel, 1992 | MR | Zbl
[36] Ullrich M., Ullrich T., “The role of Frolov's cubature formula for functions with bounded mixed derivative”, SIAM J. Numer. Anal., 54:2 (2016), 969–993 | DOI | MR | Zbl
[37] Ullrich T., Local mean characterization of Besov–Triebel–Lizorkin type spaces with dominating mixed smoothness on rectangular domains, Preprint, Univ. Bonn, Bonn, 2008
[38] Vybiral J., Function spaces with dominating mixed smoothness, Diss. Math., 436, Inst. Mat. PAN, Warsaw, 2006 | MR