Optimal Cubature Formulas on Classes of Periodic Functions in Several Variables
Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 22-42

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish sharp order estimates for the error of optimal cubature formulas on the Nikol'skii–Besov and Lizorkin–Triebel type spaces, $B^{s\,\mathtt {m}}_{p\,q}(\mathbb T^m)$ and $L^{s\,\mathtt {m}}_{p\,q}(\mathbb T^m)$, respectively, for a number of relations between the parameters $s$, $p$, $q$, and $\mathtt {m}$ ($s=(s_1,\dots ,s_n)\in \mathbb R^n_+$, $1\leq p,q\leq \infty $, $\mathtt {m}=(m_1,\dots ,m_n)\in \mathbb N ^n$, $m=m_1+\dots +m_n$). Lower estimates are proved via Bakhvalov's method. Upper estimates are based on Frolov's cubature formulas.
@article{TRSPY_2021_312_a1,
     author = {D. B. Bazarkhanov},
     title = {Optimal {Cubature} {Formulas} on {Classes} of {Periodic} {Functions} in {Several} {Variables}},
     journal = {Informatics and Automation},
     pages = {22--42},
     publisher = {mathdoc},
     volume = {312},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a1/}
}
TY  - JOUR
AU  - D. B. Bazarkhanov
TI  - Optimal Cubature Formulas on Classes of Periodic Functions in Several Variables
JO  - Informatics and Automation
PY  - 2021
SP  - 22
EP  - 42
VL  - 312
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a1/
LA  - ru
ID  - TRSPY_2021_312_a1
ER  - 
%0 Journal Article
%A D. B. Bazarkhanov
%T Optimal Cubature Formulas on Classes of Periodic Functions in Several Variables
%J Informatics and Automation
%D 2021
%P 22-42
%V 312
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a1/
%G ru
%F TRSPY_2021_312_a1
D. B. Bazarkhanov. Optimal Cubature Formulas on Classes of Periodic Functions in Several Variables. Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 22-42. http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a1/