Stable Solvability of Nonlinear Equations under Completely Continuous Perturbations
Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 7-21

Voir la notice de l'article provenant de la source Math-Net.Ru

For nonlinear mappings acting in Banach spaces, we examine inverse and implicit function theorems under various smoothness assumptions. For various regularity (normality) conditions imposed on such mappings, we prove that the corresponding equations have solutions under any sufficiently small (in the norm) completely continuous perturbations. A priori estimates for these solutions are obtained.
@article{TRSPY_2021_312_a0,
     author = {A. V. Arutyunov and S. E. Zhukovskiy},
     title = {Stable {Solvability} of {Nonlinear} {Equations} under {Completely} {Continuous} {Perturbations}},
     journal = {Informatics and Automation},
     pages = {7--21},
     publisher = {mathdoc},
     volume = {312},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a0/}
}
TY  - JOUR
AU  - A. V. Arutyunov
AU  - S. E. Zhukovskiy
TI  - Stable Solvability of Nonlinear Equations under Completely Continuous Perturbations
JO  - Informatics and Automation
PY  - 2021
SP  - 7
EP  - 21
VL  - 312
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a0/
LA  - ru
ID  - TRSPY_2021_312_a0
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%A S. E. Zhukovskiy
%T Stable Solvability of Nonlinear Equations under Completely Continuous Perturbations
%J Informatics and Automation
%D 2021
%P 7-21
%V 312
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a0/
%G ru
%F TRSPY_2021_312_a0
A. V. Arutyunov; S. E. Zhukovskiy. Stable Solvability of Nonlinear Equations under Completely Continuous Perturbations. Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 7-21. http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a0/