Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2021_312_a0, author = {A. V. Arutyunov and S. E. Zhukovskiy}, title = {Stable {Solvability} of {Nonlinear} {Equations} under {Completely} {Continuous} {Perturbations}}, journal = {Informatics and Automation}, pages = {7--21}, publisher = {mathdoc}, volume = {312}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a0/} }
TY - JOUR AU - A. V. Arutyunov AU - S. E. Zhukovskiy TI - Stable Solvability of Nonlinear Equations under Completely Continuous Perturbations JO - Informatics and Automation PY - 2021 SP - 7 EP - 21 VL - 312 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a0/ LA - ru ID - TRSPY_2021_312_a0 ER -
A. V. Arutyunov; S. E. Zhukovskiy. Stable Solvability of Nonlinear Equations under Completely Continuous Perturbations. Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 7-21. http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a0/
[1] V. M. Alekseev, V. M. Tikhomirov, and S. V. Fomin, Optimal Control, Consultants Bureau, New York, 1987 | MR | MR | Zbl
[2] A. V. Arutyunov, “Implicit function theorem without a priori assumptions about normality”, Comput. Math. Math. Phys., 46:2 (2006), 195–205 | DOI | MR | MR | Zbl
[3] A. V. Arutyunov, “Smooth abnormal problems in extremum theory and analysis”, Russ. Math. Surv., 67:3 (2012), 403–457 | DOI | MR | Zbl
[4] A. V. Arutyunov, “Existence of real solutions of nonlinear equations without a priori normality assumptions”, Math. Notes, 109:1–2 (2021), 3–14 | MR
[5] Arutyunov A.V., Avakov E.R., Zhukovsky S.E., “Stability theorems for estimating the distance to a set of coincidence points”, SIAM J. Optim., 25:2 (2015), 807–828 | DOI | MR | Zbl
[6] Arutyunov A.V., Izmailov A.F., Zhukovskiy S.E., “Continuous selections of solutions for locally Lipschitzian equations”, J. Optim. Theory Appl., 185:3 (2020), 679–699 | DOI | MR | Zbl
[7] Arutyunov A.V., Magaril-Ilyaev G.G., Tikhomirov V.M., Printsip maksimuma Pontryagina: Dokazatelstvo i prilozheniya, Faktorial Press, M., 2006 | MR
[8] A. V. Arutyunov and S. E. Zhukovskiy, “Existence and properties of inverse mappings”, Proc. Steklov Inst. Math., 271 (2010), 12–22 | DOI | MR | Zbl
[9] A. V. Arutyunov and S. E. Zhukovskiy, “Hadamard's theorem for mappings with relaxed smoothness conditions”, Sb. Math., 210:2 (2019), 165–183 | DOI | MR | Zbl
[10] E. R. Avakov, “Theorems on estimates in the neighborhood of a singular point of a mapping”, Math. Notes, 47:5 (1990), 425–432 | DOI | MR | Zbl
[11] E. R. Avakov and G. G. Magaril-Il'yaev, “An implicit function theorem for inclusions defined by close mappings”, Math. Notes, 103:3–4 (2018), 507–512 | DOI | MR | Zbl
[12] Bartle R.G., Graves L.M., “Mappings between function spaces”, Trans. Amer. Math. Soc., 72 (1952), 400–413 | DOI | MR | Zbl
[13] Clarke F.H., Optimization and nonsmooth analysis, J. Wiley Sons, New York, 1983 | MR | Zbl
[14] Dontchev A.L., Rockafellar R.T., Implicit functions and solution mappings: A view from variational analysis, 2nd ed., Springer, New York, 2014 | MR | Zbl
[15] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic, New York, 1970 | MR | Zbl
[16] Pourciau B.H., “Analysis and optimization of Lipschitz continuous mappings”, J. Optim. Theory Appl., 22 (1977), 311–351 | DOI | MR | Zbl