Stable Solvability of Nonlinear Equations under Completely Continuous Perturbations
Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 7-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

For nonlinear mappings acting in Banach spaces, we examine inverse and implicit function theorems under various smoothness assumptions. For various regularity (normality) conditions imposed on such mappings, we prove that the corresponding equations have solutions under any sufficiently small (in the norm) completely continuous perturbations. A priori estimates for these solutions are obtained.
@article{TRSPY_2021_312_a0,
     author = {A. V. Arutyunov and S. E. Zhukovskiy},
     title = {Stable {Solvability} of {Nonlinear} {Equations} under {Completely} {Continuous} {Perturbations}},
     journal = {Informatics and Automation},
     pages = {7--21},
     publisher = {mathdoc},
     volume = {312},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a0/}
}
TY  - JOUR
AU  - A. V. Arutyunov
AU  - S. E. Zhukovskiy
TI  - Stable Solvability of Nonlinear Equations under Completely Continuous Perturbations
JO  - Informatics and Automation
PY  - 2021
SP  - 7
EP  - 21
VL  - 312
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a0/
LA  - ru
ID  - TRSPY_2021_312_a0
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%A S. E. Zhukovskiy
%T Stable Solvability of Nonlinear Equations under Completely Continuous Perturbations
%J Informatics and Automation
%D 2021
%P 7-21
%V 312
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a0/
%G ru
%F TRSPY_2021_312_a0
A. V. Arutyunov; S. E. Zhukovskiy. Stable Solvability of Nonlinear Equations under Completely Continuous Perturbations. Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 7-21. http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a0/

[1] V. M. Alekseev, V. M. Tikhomirov, and S. V. Fomin, Optimal Control, Consultants Bureau, New York, 1987 | MR | MR | Zbl

[2] A. V. Arutyunov, “Implicit function theorem without a priori assumptions about normality”, Comput. Math. Math. Phys., 46:2 (2006), 195–205 | DOI | MR | MR | Zbl

[3] A. V. Arutyunov, “Smooth abnormal problems in extremum theory and analysis”, Russ. Math. Surv., 67:3 (2012), 403–457 | DOI | MR | Zbl

[4] A. V. Arutyunov, “Existence of real solutions of nonlinear equations without a priori normality assumptions”, Math. Notes, 109:1–2 (2021), 3–14 | MR

[5] Arutyunov A.V., Avakov E.R., Zhukovsky S.E., “Stability theorems for estimating the distance to a set of coincidence points”, SIAM J. Optim., 25:2 (2015), 807–828 | DOI | MR | Zbl

[6] Arutyunov A.V., Izmailov A.F., Zhukovskiy S.E., “Continuous selections of solutions for locally Lipschitzian equations”, J. Optim. Theory Appl., 185:3 (2020), 679–699 | DOI | MR | Zbl

[7] Arutyunov A.V., Magaril-Ilyaev G.G., Tikhomirov V.M., Printsip maksimuma Pontryagina: Dokazatelstvo i prilozheniya, Faktorial Press, M., 2006 | MR

[8] A. V. Arutyunov and S. E. Zhukovskiy, “Existence and properties of inverse mappings”, Proc. Steklov Inst. Math., 271 (2010), 12–22 | DOI | MR | Zbl

[9] A. V. Arutyunov and S. E. Zhukovskiy, “Hadamard's theorem for mappings with relaxed smoothness conditions”, Sb. Math., 210:2 (2019), 165–183 | DOI | MR | Zbl

[10] E. R. Avakov, “Theorems on estimates in the neighborhood of a singular point of a mapping”, Math. Notes, 47:5 (1990), 425–432 | DOI | MR | Zbl

[11] E. R. Avakov and G. G. Magaril-Il'yaev, “An implicit function theorem for inclusions defined by close mappings”, Math. Notes, 103:3–4 (2018), 507–512 | DOI | MR | Zbl

[12] Bartle R.G., Graves L.M., “Mappings between function spaces”, Trans. Amer. Math. Soc., 72 (1952), 400–413 | DOI | MR | Zbl

[13] Clarke F.H., Optimization and nonsmooth analysis, J. Wiley Sons, New York, 1983 | MR | Zbl

[14] Dontchev A.L., Rockafellar R.T., Implicit functions and solution mappings: A view from variational analysis, 2nd ed., Springer, New York, 2014 | MR | Zbl

[15] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic, New York, 1970 | MR | Zbl

[16] Pourciau B.H., “Analysis and optimization of Lipschitz continuous mappings”, J. Optim. Theory Appl., 22 (1977), 311–351 | DOI | MR | Zbl