Existence of Optimal Stationary States of Exploited Populations with Diffusion
Informatics and Automation, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 135-142

Voir la notice de l'article provenant de la source Math-Net.Ru

We study population dynamics with diffusion described by a parabolic equation with a logistic reaction term in the presence of exploitation consisting in constant harvesting of a part of the population density. Under natural constraints on the parameters of the model, we prove that there exists a stable stationary state of the population that provides the maximum profit of exploitation in the natural form.
@article{TRSPY_2020_310_a8,
     author = {A. A. Davydov},
     title = {Existence of {Optimal} {Stationary} {States} of {Exploited} {Populations} with {Diffusion}},
     journal = {Informatics and Automation},
     pages = {135--142},
     publisher = {mathdoc},
     volume = {310},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_310_a8/}
}
TY  - JOUR
AU  - A. A. Davydov
TI  - Existence of Optimal Stationary States of Exploited Populations with Diffusion
JO  - Informatics and Automation
PY  - 2020
SP  - 135
EP  - 142
VL  - 310
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2020_310_a8/
LA  - ru
ID  - TRSPY_2020_310_a8
ER  - 
%0 Journal Article
%A A. A. Davydov
%T Existence of Optimal Stationary States of Exploited Populations with Diffusion
%J Informatics and Automation
%D 2020
%P 135-142
%V 310
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2020_310_a8/
%G ru
%F TRSPY_2020_310_a8
A. A. Davydov. Existence of Optimal Stationary States of Exploited Populations with Diffusion. Informatics and Automation, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 135-142. http://geodesic.mathdoc.fr/item/TRSPY_2020_310_a8/