On an Unsteady Boundary Layer of a Viscous Rheologically Complex Fluid
Informatics and Automation, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 40-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a nonstationary Prandtl-type system of equations that describes the behavior of a boundary layer of a viscous incompressible fluid in the modification of O. A. Ladyzhenskaya. We prove an existence and uniqueness theorem both in Cartesian coordinates and in terms of the Crocco variables.
@article{TRSPY_2020_310_a3,
     author = {R. R. Bulatova and V. N. Samokhin and G. A. Chechkin},
     title = {On an {Unsteady} {Boundary} {Layer} of a {Viscous} {Rheologically} {Complex} {Fluid}},
     journal = {Informatics and Automation},
     pages = {40--77},
     publisher = {mathdoc},
     volume = {310},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_310_a3/}
}
TY  - JOUR
AU  - R. R. Bulatova
AU  - V. N. Samokhin
AU  - G. A. Chechkin
TI  - On an Unsteady Boundary Layer of a Viscous Rheologically Complex Fluid
JO  - Informatics and Automation
PY  - 2020
SP  - 40
EP  - 77
VL  - 310
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2020_310_a3/
LA  - ru
ID  - TRSPY_2020_310_a3
ER  - 
%0 Journal Article
%A R. R. Bulatova
%A V. N. Samokhin
%A G. A. Chechkin
%T On an Unsteady Boundary Layer of a Viscous Rheologically Complex Fluid
%J Informatics and Automation
%D 2020
%P 40-77
%V 310
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2020_310_a3/
%G ru
%F TRSPY_2020_310_a3
R. R. Bulatova; V. N. Samokhin; G. A. Chechkin. On an Unsteady Boundary Layer of a Viscous Rheologically Complex Fluid. Informatics and Automation, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 40-77. http://geodesic.mathdoc.fr/item/TRSPY_2020_310_a3/

[1] Bulatova R.R., Chechkin G.A., Chechkina T.P., Samokhin V.N., “On the influence of a magnetic field on the separation of the boundary layer of a non-Newtonian MHD medium”, C. r. Méc., 346:9 (2018), 807–814 | DOI

[2] R. R. Bulatova, V. N. Samokhin, and G. A. Chechkin, “Equations of magnetohydrodynamic boundary layer for a modified incompressible viscous medium. Boundary layer separation”, J. Math. Sci., 232:3 (2018), 299–321 | DOI | MR | Zbl

[3] R. R. Bulatova, V. N. Samokhin, and G. A. Chechkin, “System of boundary layer equations for a rheologically complicated medium: Crocco variables”, Dokl. Math., 100:1 (2019), 332–338 | DOI | MR | Zbl

[4] R. R. Bulatova, V. N. Samokhin, and G. A. Chechkin, “Equations of symmetric MHD-boundary layer of viscous fluid with Ladyzhenskaya rheology law”, J. Math. Sci., 244:2 (2020), 158–169 | DOI | MR | Zbl

[5] O. A. Oleinik and V. N. Samokhin, Mathematical Models in Boundary Layer Theory, Nauka, Moscow, 1997 | MR | Zbl

[6] Chapman Hall/CRC, Boca Raton, FL, 1999 | MR | Zbl

[7] V. N. Samokhin and G. A. Chechkin, “Equations of boundary layer for a generalized Newtonian medium near a critical point”, J. Math. Sci., 234:4 (2018), 485–496 | DOI | MR | Zbl

[8] V. N. Samokhin, G. A. Chechkin, and T. P. Chechkina, “On the boundary layer in the case of viscous fluid flowing around confuser with the Ladyzhenskaya rheological law”, J. Math. Sci., 244:3 (2020), 524–539 | DOI | MR | Zbl

[9] V. N. Samokhin, G. M. Fadeeva, and G. A. Chechkin, “Equations of the boundary layer for a modified Navier–Stokes system”, J. Math. Sci., 179:4 (2011), 557–577 | DOI | MR | Zbl