On an Unsteady Boundary Layer of a Viscous Rheologically Complex Fluid
Informatics and Automation, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 40-77
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a nonstationary Prandtl-type system of equations that describes the behavior of a boundary layer of a viscous incompressible fluid in the modification of O. A. Ladyzhenskaya. We prove an existence and uniqueness theorem both in Cartesian coordinates and in terms of the Crocco variables.
@article{TRSPY_2020_310_a3,
author = {R. R. Bulatova and V. N. Samokhin and G. A. Chechkin},
title = {On an {Unsteady} {Boundary} {Layer} of a {Viscous} {Rheologically} {Complex} {Fluid}},
journal = {Informatics and Automation},
pages = {40--77},
publisher = {mathdoc},
volume = {310},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_310_a3/}
}
TY - JOUR AU - R. R. Bulatova AU - V. N. Samokhin AU - G. A. Chechkin TI - On an Unsteady Boundary Layer of a Viscous Rheologically Complex Fluid JO - Informatics and Automation PY - 2020 SP - 40 EP - 77 VL - 310 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2020_310_a3/ LA - ru ID - TRSPY_2020_310_a3 ER -
R. R. Bulatova; V. N. Samokhin; G. A. Chechkin. On an Unsteady Boundary Layer of a Viscous Rheologically Complex Fluid. Informatics and Automation, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 40-77. http://geodesic.mathdoc.fr/item/TRSPY_2020_310_a3/