Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2020_310_a18, author = {Ivan Yu. Polekhin}, title = {Some {Results} on the {Existence} of {Forced} {Oscillations} in {Mechanical} {Systems}}, journal = {Informatics and Automation}, pages = {267--279}, publisher = {mathdoc}, volume = {310}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_310_a18/} }
Ivan Yu. Polekhin. Some Results on the Existence of Forced Oscillations in Mechanical Systems. Informatics and Automation, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 267-279. http://geodesic.mathdoc.fr/item/TRSPY_2020_310_a18/
[1] Bernstein S., “Sur certaines équations différentielles ordinaires du second ordre”, C. r. Acad. sci. Paris, 138 (1904), 950–951 | Zbl
[2] S. V. Bolotin and V. V. Kozlov, “Calculus of variations in the large, existence of trajectories in a domain with boundary, and Whitney's inverted pendulum problem”, Izv. Math., 79:5 (2015), 894–901 | DOI | MR | Zbl
[3] Cefalo M., Lanari L., Oriolo G., “Energy-based control of the butterfly robot”, IFAC Proc. Vols., 39:15 (2006), 1–6 | DOI
[4] De Coster C., Habets P., Two-point boundary value problems: Lower and upper solutions, Math. Sci. Eng., 205, Elsevier, Amsterdam, 2006 | MR | Zbl
[5] Dold A., Lectures on algebraic topology, Springer, Berlin, 2012 | MR
[6] Hamel G., “Über erzwungene Schwingungen bei endlichen Amplituden”, Festschrift David Hilbert zu seinem sechzigsten Geburtstag am 23. Januar 1922, Julius Springer, Berlin, 1922, 326–338 | DOI | MR
[7] Lynch K.M., Shiroma N., Arai H., Tanie K., “The roles of shape and motion in dynamic manipulation: The butterfly example”, Proc. 1998 IEEE Int. Conf. on Robotics and Automation (Cat. no. 98CH36146), v. 3, IEEE, 1998, 1958–1963 | DOI
[8] Mawhin J., “Seventy-five years of global analysis around the forced pendulum equation”, Equadiff 9: Proc. Conf. on Differential Equations and Their Applications (Brno, 1997), Masaryk Univ., Brno, 1998, 115–145
[9] I. Yu. Polekhin, “Examples of topological approach to the problem of inverted pendulum with moving pivot point”, Nelinein. Din., 10:4 (2014), 465–472 | DOI | MR | Zbl
[10] Polekhin I., Periodic and falling-free motion of an inverted spherical pendulum with a moving pivot point, E-print, 2014, arXiv: 1411.1585 [math.DS] | Zbl
[11] Polekhin I., “Forced oscillations of a massive point on a compact surface with a boundary”, Nonlinear Anal. Theory Methods Appl., 128 (2015), 100–105 | DOI | MR | Zbl
[12] Polekhin I., “On forced oscillations in groups of interacting nonlinear systems”, Nonlinear Anal. Theory Methods Appl., 135 (2016), 120–128 | DOI | MR | Zbl
[13] Polekhin I., “On topological obstructions to global stabilization of an inverted pendulum”, Syst. Control Lett., 113 (2018), 31–35 | DOI | MR | Zbl
[14] Srzednicki R., “Periodic and bounded solutions in blocks for time-periodic nonautonomous ordinary differential equations”, Nonlinear Anal. Theory Methods Appl., 22:6 (1994), 707–737 | DOI | MR | Zbl
[15] Srzednicki R., “On periodic solutions in the Whitney's inverted pendulum problem”, Discrete Contin. Dyn. Syst. Ser. S, 12:7 (2019), 2127–2141 | MR | Zbl
[16] Srzednicki R., Wójcik K., Zgliczyński P., “Fixed point results based on the Ważewski method”, Handbook of topological fixed point theory, Springer, Berlin, 2005, 905–943 | DOI | MR
[17] Surov M., Shiriaev A., Freidovich L., Gusev S., Paramonov L., “Case study in non-prehensile manipulation: Planning and orbital stabilization of one-directional rollings for the “Butterfly” robot”, Proc. IEEE Int. Conf. on Robotics and Automation (ICRA) (Seattle, WA, 2015), IEEE, 2015, 1484–1489
[18] Wazewski T., “Sur un principe topologique de l'examen de l'allure asymptotique des intégrales des équations différentielles ordinaires”, Ann. Soc. Polon. math., 20 (1948), 279–313 | MR | Zbl