Simple One-Dimensional Waves in an Incompressible Anisotropic Elastoplastic Medium with Hardening
Informatics and Automation, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 189-198
Voir la notice de l'article provenant de la source Math-Net.Ru
We study simple one-dimensional waves (Riemann waves) in an incompressible anisotropic elastoplastic medium with hardening. The motion is parallel to the planes of constant phase. We show that there exist two types of such waves: fast and slow waves, whose velocities are different everywhere except for some points in the plane of stress components. The medium is assumed to be nonlinear and defined by its elastic properties as well as by conditions for the formation of plastic deformations. We find the velocities of the characteristics that carry the Riemann waves, and analyze the evolution of the Riemann waves and the overturning conditions for these waves.
@article{TRSPY_2020_310_a13,
author = {A. G. Kulikovskii and A. P. Chugainova},
title = {Simple {One-Dimensional} {Waves} in an {Incompressible} {Anisotropic} {Elastoplastic} {Medium} with {Hardening}},
journal = {Informatics and Automation},
pages = {189--198},
publisher = {mathdoc},
volume = {310},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_310_a13/}
}
TY - JOUR AU - A. G. Kulikovskii AU - A. P. Chugainova TI - Simple One-Dimensional Waves in an Incompressible Anisotropic Elastoplastic Medium with Hardening JO - Informatics and Automation PY - 2020 SP - 189 EP - 198 VL - 310 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2020_310_a13/ LA - ru ID - TRSPY_2020_310_a13 ER -
%0 Journal Article %A A. G. Kulikovskii %A A. P. Chugainova %T Simple One-Dimensional Waves in an Incompressible Anisotropic Elastoplastic Medium with Hardening %J Informatics and Automation %D 2020 %P 189-198 %V 310 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2020_310_a13/ %G ru %F TRSPY_2020_310_a13
A. G. Kulikovskii; A. P. Chugainova. Simple One-Dimensional Waves in an Incompressible Anisotropic Elastoplastic Medium with Hardening. Informatics and Automation, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 189-198. http://geodesic.mathdoc.fr/item/TRSPY_2020_310_a13/