Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2020_310_a13, author = {A. G. Kulikovskii and A. P. Chugainova}, title = {Simple {One-Dimensional} {Waves} in an {Incompressible} {Anisotropic} {Elastoplastic} {Medium} with {Hardening}}, journal = {Informatics and Automation}, pages = {189--198}, publisher = {mathdoc}, volume = {310}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_310_a13/} }
TY - JOUR AU - A. G. Kulikovskii AU - A. P. Chugainova TI - Simple One-Dimensional Waves in an Incompressible Anisotropic Elastoplastic Medium with Hardening JO - Informatics and Automation PY - 2020 SP - 189 EP - 198 VL - 310 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2020_310_a13/ LA - ru ID - TRSPY_2020_310_a13 ER -
%0 Journal Article %A A. G. Kulikovskii %A A. P. Chugainova %T Simple One-Dimensional Waves in an Incompressible Anisotropic Elastoplastic Medium with Hardening %J Informatics and Automation %D 2020 %P 189-198 %V 310 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2020_310_a13/ %G ru %F TRSPY_2020_310_a13
A. G. Kulikovskii; A. P. Chugainova. Simple One-Dimensional Waves in an Incompressible Anisotropic Elastoplastic Medium with Hardening. Informatics and Automation, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 189-198. http://geodesic.mathdoc.fr/item/TRSPY_2020_310_a13/
[1] D. B. Balashov, “Simple waves in Prandtl–Reuss equations”, J. Appl. Math. Mech., 56:1 (1992), 107–116 | DOI | MR | Zbl
[2] A. A. Barmin and A. G. Kulikovskii, “Shock waves of ionized gases in an electromagnetic field”, Sov. Math., Dokl., 13:1 (1968), 4–7
[3] S. K. Godunov and E. I. Romenskii, Elements of Continuum Mechanics and Conservation Laws, Nauchnaya Kniga, Novosibirsk, 1998 | MR | Zbl
[4] Univ. Ser., 4, Kluwer, New York, 2003 | MR | Zbl
[5] A. G. Kulikovskii, “Multi-parameter fronts of strong discontinuities in continuum mechanics”, J. Appl. Math. Mech., 75:4 (2011), 378–389 | DOI | MR
[6] A. G. Kulikovskii and A. P. Chugainova, “The overturning of Riemann waves in elastoplastic media with hardening”, J. Appl. Math. Mech., 77:4 (2013), 350–359 | DOI | MR | Zbl
[7] A. G. Kulikovskii and A. P. Chugainova, “Shock waves in elastoplastic media with the structure defined by the stress relaxation process”, Proc. Steklov Inst. Math., 289 (2015), 167–182 | DOI | MR | Zbl
[8] A. G. Kulikovskii and A. P. Chugainova, “Study of discontinuities in solutions of the Prandtl–Reuss elastoplasticity equations”, Comput. Math. Math. Phys., 56:4 (2016), 637–649 | DOI | MR
[9] A. G. Kulikovskii and A. P. Chugainova, “A self-similar wave problem in a Prandtl–Reuss elastoplastic medium”, Proc. Steklov Inst. Math., 295 (2016), 179–189 | DOI | MR | Zbl
[10] A. G. Kulikovskii and E. I. Sveshinkova, “The formation of an anisotropic elastic medium on the compaction front of a stream of particles”, J. Appl. Math. Mech., 79:6 (2015), 521–530 | DOI | MR | Zbl