Simple One-Dimensional Waves in an Incompressible Anisotropic Elastoplastic Medium with Hardening
Informatics and Automation, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 189-198.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study simple one-dimensional waves (Riemann waves) in an incompressible anisotropic elastoplastic medium with hardening. The motion is parallel to the planes of constant phase. We show that there exist two types of such waves: fast and slow waves, whose velocities are different everywhere except for some points in the plane of stress components. The medium is assumed to be nonlinear and defined by its elastic properties as well as by conditions for the formation of plastic deformations. We find the velocities of the characteristics that carry the Riemann waves, and analyze the evolution of the Riemann waves and the overturning conditions for these waves.
@article{TRSPY_2020_310_a13,
     author = {A. G. Kulikovskii and A. P. Chugainova},
     title = {Simple {One-Dimensional} {Waves} in an {Incompressible} {Anisotropic} {Elastoplastic} {Medium} with {Hardening}},
     journal = {Informatics and Automation},
     pages = {189--198},
     publisher = {mathdoc},
     volume = {310},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_310_a13/}
}
TY  - JOUR
AU  - A. G. Kulikovskii
AU  - A. P. Chugainova
TI  - Simple One-Dimensional Waves in an Incompressible Anisotropic Elastoplastic Medium with Hardening
JO  - Informatics and Automation
PY  - 2020
SP  - 189
EP  - 198
VL  - 310
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2020_310_a13/
LA  - ru
ID  - TRSPY_2020_310_a13
ER  - 
%0 Journal Article
%A A. G. Kulikovskii
%A A. P. Chugainova
%T Simple One-Dimensional Waves in an Incompressible Anisotropic Elastoplastic Medium with Hardening
%J Informatics and Automation
%D 2020
%P 189-198
%V 310
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2020_310_a13/
%G ru
%F TRSPY_2020_310_a13
A. G. Kulikovskii; A. P. Chugainova. Simple One-Dimensional Waves in an Incompressible Anisotropic Elastoplastic Medium with Hardening. Informatics and Automation, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 189-198. http://geodesic.mathdoc.fr/item/TRSPY_2020_310_a13/

[1] D. B. Balashov, “Simple waves in Prandtl–Reuss equations”, J. Appl. Math. Mech., 56:1 (1992), 107–116 | DOI | MR | Zbl

[2] A. A. Barmin and A. G. Kulikovskii, “Shock waves of ionized gases in an electromagnetic field”, Sov. Math., Dokl., 13:1 (1968), 4–7

[3] S. K. Godunov and E. I. Romenskii, Elements of Continuum Mechanics and Conservation Laws, Nauchnaya Kniga, Novosibirsk, 1998 | MR | Zbl

[4] Univ. Ser., 4, Kluwer, New York, 2003 | MR | Zbl

[5] A. G. Kulikovskii, “Multi-parameter fronts of strong discontinuities in continuum mechanics”, J. Appl. Math. Mech., 75:4 (2011), 378–389 | DOI | MR

[6] A. G. Kulikovskii and A. P. Chugainova, “The overturning of Riemann waves in elastoplastic media with hardening”, J. Appl. Math. Mech., 77:4 (2013), 350–359 | DOI | MR | Zbl

[7] A. G. Kulikovskii and A. P. Chugainova, “Shock waves in elastoplastic media with the structure defined by the stress relaxation process”, Proc. Steklov Inst. Math., 289 (2015), 167–182 | DOI | MR | Zbl

[8] A. G. Kulikovskii and A. P. Chugainova, “Study of discontinuities in solutions of the Prandtl–Reuss elastoplasticity equations”, Comput. Math. Math. Phys., 56:4 (2016), 637–649 | DOI | MR

[9] A. G. Kulikovskii and A. P. Chugainova, “A self-similar wave problem in a Prandtl–Reuss elastoplastic medium”, Proc. Steklov Inst. Math., 295 (2016), 179–189 | DOI | MR | Zbl

[10] A. G. Kulikovskii and E. I. Sveshinkova, “The formation of an anisotropic elastic medium on the compaction front of a stream of particles”, J. Appl. Math. Mech., 79:6 (2015), 521–530 | DOI | MR | Zbl