Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2020_310_a11, author = {A. V. Dymov}, title = {Asymptotic {Estimates} for {Singular} {Integrals} of {Fractions} {Whose} {Denominators} {Contain} {Products} of {Block} {Quadratic} {Forms}}, journal = {Informatics and Automation}, pages = {161--175}, publisher = {mathdoc}, volume = {310}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_310_a11/} }
TY - JOUR AU - A. V. Dymov TI - Asymptotic Estimates for Singular Integrals of Fractions Whose Denominators Contain Products of Block Quadratic Forms JO - Informatics and Automation PY - 2020 SP - 161 EP - 175 VL - 310 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2020_310_a11/ LA - ru ID - TRSPY_2020_310_a11 ER -
%0 Journal Article %A A. V. Dymov %T Asymptotic Estimates for Singular Integrals of Fractions Whose Denominators Contain Products of Block Quadratic Forms %J Informatics and Automation %D 2020 %P 161-175 %V 310 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2020_310_a11/ %G ru %F TRSPY_2020_310_a11
A. V. Dymov. Asymptotic Estimates for Singular Integrals of Fractions Whose Denominators Contain Products of Block Quadratic Forms. Informatics and Automation, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 161-175. http://geodesic.mathdoc.fr/item/TRSPY_2020_310_a11/
[1] Buckmaster T., Germain P., Hani Z., Shatah J., Onset of the wave turbulence description of the longtime behavior of the nonlinear Schrödinger equation, E-print, 2019, arXiv: 1907.03667 [math.AP]
[2] Dimassi M., Sjöstrand J., Spectral asymptotics in the semi-classical limit, LMS Lect. Note Ser., 268, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl
[3] Dymov A., Kuksin S., Formal expansions in stochastic model for wave turbulence. 1: Kinetic limit, E-print, 2019, arXiv: 1907.04531 [math-ph]
[4] Dymov A., Kuksin S., Formal expansions in stochastic model for wave turbulence. 2: Method of diagram decomposition, E-print, 2019, arXiv: ; Dymov A., Kuksin S., On the Zakharov–L'vov stochastic model for wave turbulence, E-print, 2019, arXiv: 1907.02279 [math-ph]1907.05044 [math-ph]
[5] A. V. Dymov and S. B. Kuksin, “On the Zakharov–L'vov stochastic model for wave turbulence”, Dokl. Math., 101:2 (2020), 102–109 | DOI
[6] Hörmander L., The analysis of linear partial differential operators, v. I, Grundl. Math. Wiss., 256, Distribution theory and Fourier analysis, Springer, Berlin, 1983 | MR | Zbl
[7] Kuksin S., “Asymptotic expansions for some integrals of quotients with degenerated divisors”, Russ. J. Math. Phys., 24:4 (2017), 476–487 | DOI | MR | Zbl
[8] Kuksin S., “Asymptotic properties of integrals of quotients when the numerator oscillates and the denominator degenerates”, J. Math. Phys. Anal. Geom., 14:4 (2018), 510–518 | MR | Zbl
[9] Lukkarinen J., Spohn H., “Weakly nonlinear Schrödinger equation with random initial data”, Invent. math., 183:1 (2011), 79–188 | DOI | MR | Zbl
[10] Nazarenko S., Wave turbulence, Lect. Notes Phys., 825, Springer, Berlin, 2011 | DOI | MR | Zbl
[11] Newell A.C., Rumpf B., “Wave turbulence”, Annu. Rev. Fluid Mech., 43 (2011), 59–78 | DOI | MR | Zbl
[12] V. E. Zakharov and V. S. L'vov, “Statistical description of nonlinear wave fields”, Radiophys. Quantum Electron., 18:10 (1975), 1084–1097 | DOI | MR
[13] Zakharov V.E., L'vov V.S., Falkovich G., Kolmogorov spectra of turbulence, v. I, Wave turbulence, Springer, Berlin, 1992 | MR | Zbl