Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2020_309_a9, author = {Marc Henneaux and C\'edric Troessaert}, title = {The {Asymptotic} {Structure} of {Gravity} at {Spatial} {Infinity} in {Four} {Spacetime} {Dimensions}}, journal = {Informatics and Automation}, pages = {141--164}, publisher = {mathdoc}, volume = {309}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a9/} }
TY - JOUR AU - Marc Henneaux AU - Cédric Troessaert TI - The Asymptotic Structure of Gravity at Spatial Infinity in Four Spacetime Dimensions JO - Informatics and Automation PY - 2020 SP - 141 EP - 164 VL - 309 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a9/ LA - ru ID - TRSPY_2020_309_a9 ER -
Marc Henneaux; Cédric Troessaert. The Asymptotic Structure of Gravity at Spatial Infinity in Four Spacetime Dimensions. Informatics and Automation, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 141-164. http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a9/
[1] Arnowitt R., Deser S., Misner C.W., “The dynamics of general relativity”, Gravitation: An introduction to current research, Ch. 7, ed. by L. Witten, J. Wiley and Sons, New York, 1962, 227–264 ; Gen. Relativ. Gravitation, 40:9 (2008), 1997–2027 ; arXiv: gr-qc/0405109 | MR | MR | Zbl
[2] Ashtekar A., Bombelli L., Reula O., “The covariant phase space of asymptotically flat gravitational fields”, Mechanics, analysis and geometry: 200 years after Lagrange, North-Holland, Amsterdam, 1991, 417–450 | MR
[3] Ashtekar A., Hansen R.O., “A unified treatment of null and spatial infinity in general relativity. I: Universal structure, asymptotic symmetries, and conserved quantities at spatial infinity”, J. Math. Phys., 19:7 (1978), 1542–1566 | MR
[4] Beig R., “Integration of Einstein's equations near spatial infinity”, Proc. R. Soc. London A, 391 (1984), 295–304 | MR | Zbl
[5] Beig R., Schmidt B.G., “Einstein's equations near spatial infinity”, Commun. Math. Phys., 87:1 (1982), 65–80 | MR | Zbl
[6] Benguria R., Cordero P., Teitelboim C., “Aspects of the Hamiltonian dynamics of interacting gravitational gauge and Higgs fields with applications to spherical symmetry”, Nucl. Phys. B, 122:1 (1977), 61–99
[7] Bondi H., van der Burg M.G.J., Metzner A.W.K., “Gravitational waves in general relativity. VII: Waves from axi-symmetric isolated systems”, Proc. R. Soc. London A, 269 (1962), 21–52 | MR | Zbl
[8] Bousso R., Porrati M., “Soft hair as a soft wig”, Classical Quantum Gravity, 34:20 (2017), 204001 ; arXiv: 1706.00436 | MR | Zbl
[9] Brown J.D., Henneaux M., “Central charges in the canonical realization of asymptotic symmetries: An example from three dimensional gravity”, Commun. Math. Phys., 104:2 (1986), 207–226 | MR | Zbl
[10] Bunster C., Portugues R., Cnockaert S., Henneaux M., “Monopoles for gravitation and for higher spin fields”, Phys. Rev. D, 73:10 (2006), 105014 ; arXiv: hep-th/0601222 | MR
[11] Christodoulou D., Klainerman S., The global nonlinear stability of the Minkowski space, Princeton Math. Ser., 41, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl
[12] Dirac P.A.M., “The theory of gravitation in Hamiltonian form”, Proc. R. Soc. London A, 246 (1958), 333–343 | MR | Zbl
[13] Friedrich H., “Gravitational fields near space-like and null infinity”, J. Geom. Phys., 24:2 (1998), 83–163 | MR
[14] Friedrich H., Kánnár J., “Bondi-type systems near spacelike infinity and the calculation of the Newman–Penrose constants”, J. Math. Phys., 41:4 (2000), 2195–2232 ; arXiv: gr-qc/9910077 | MR | Zbl
[15] Friedrich H., Kánnár J., “Calculating asymptotic quantities near space-like and null infinity from Cauchy data”, Ann. Phys., 9:3–5 (2000), 321–330 ; arXiv: gr-qc/9911103 | MR | Zbl
[16] Giddings S.B., Gravitational dressing, soft charges, and perturbative gravitational splitting, E-print, 2019, arXiv: 1903.06160 | MR
[17] Henneaux M., Teitelboim C., “Asymptotically anti-de Sitter spaces”, Commun. Math. Phys., 98:3 (1985), 391–424 | MR | Zbl
[18] Henneaux M., Troessaert C., “BMS group at spatial infinity: The Hamiltonian (ADM) approach”, J. High Energy Phys., 2018:03 (2018), 147 ; arXiv: 1801.03718 | MR | Zbl
[19] Henneaux M., Troessaert C., “Asymptotic symmetries of electromagnetism at spatial infinity”, J. High Energy Phys., 2018:05 (2018), 137 ; arXiv: 1803.10194 [hep-th] | MR | Zbl
[20] Henneaux M., Troessaert C., “Hamiltonian structure and asymptotic symmetries of the Einstein–Maxwell system at spatial infinity”, J. High Energy Phys., 2018:07 (2018), 171 ; arXiv: 1805.11288 | MR | Zbl
[21] Henneaux M., Troessaert C., “Asymptotic structure of a massless scalar field and its dual two-form field at spatial infinity”, J. High Energy Phys., 2019:05 (2019), 147 ; arXiv: 1812.07445 | MR | Zbl
[22] Henneaux M., Troessaert C., “Asymptotic structure of electromagnetism in higher spacetime dimensions”, Phys. Rev. D, 99:12 (2019), 125006 ; arXiv: 1903.04437 | MR | Zbl
[23] Herberthson M., Ludvigsen M., “A relationship between future and past null infinity”, Gen. Relativ. Gravitation, 24:11 (1992), 1185–1193 | MR | Zbl
[24] Misner C.W., “The flatter regions of Newman, Unti, and Tamburino's Generalized Schwarzschild Space”, J. Math. Phys., 4:7 (1963), 924–937 | MR
[25] Regge T., Teitelboim C., “Role of surface integrals in the Hamiltonian formulation of general relativity”, Ann. Phys., 88:1 (1974), 286–318 | MR | Zbl
[26] Sachs R.K., “Gravitational waves in general relativity. VIII: Waves in asymptotically flat space–time”, Proc. R. Soc. London A, 270 (1962), 103–126 | MR | Zbl
[27] Sachs R., “Asymptotic symmetries in gravitational theory”, Phys. Rev., 128:6 (1962), 2851–2864 | MR | Zbl
[28] Slavnov A.A., “Gauge invariant infrared regularization for non-abelian fields”, Phys. Lett. B, 98:1–2 (1981), 57–58 | MR
[29] Strominger A., Lectures on the infrared structure of gravity and gauge theory, E-print, 2017, arXiv: 1703.05448 | MR
[30] Troessaert C., “The BMS4 algebra at spatial infinity”, Classical Quantum Gravity, 35:7 (2018), 074003 ; arXiv: 1704.06223 | MR | Zbl