$T\overline T$ Deformation and the Light-Cone Gauge
Informatics and Automation, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 120-140.

Voir la notice de l'article provenant de la source Math-Net.Ru

The homogeneous inviscid Burgers equation, which determines the spectrum of a $T\overline T$ deformed model, has a natural interpretation as the condition of the gauge invariance of the target space–time energy and momentum of a (non-critical) string theory quantised in a generalised uniform light-cone gauge which depends on the deformation parameter. As a simple application of the light-cone gauge interpretation, we derive the $T\overline T$ deformed Lagrangian for a system of any number of scalars, fermions and chiral bosons with an arbitrary potential. We find that the $T\overline T$ deformation is driven by the canonical Noether stress–energy tensor but not the covariant one.
@article{TRSPY_2020_309_a8,
     author = {Sergey A. Frolov},
     title = {$T\overline T$ {Deformation} and the {Light-Cone} {Gauge}},
     journal = {Informatics and Automation},
     pages = {120--140},
     publisher = {mathdoc},
     volume = {309},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a8/}
}
TY  - JOUR
AU  - Sergey A. Frolov
TI  - $T\overline T$ Deformation and the Light-Cone Gauge
JO  - Informatics and Automation
PY  - 2020
SP  - 120
EP  - 140
VL  - 309
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a8/
LA  - ru
ID  - TRSPY_2020_309_a8
ER  - 
%0 Journal Article
%A Sergey A. Frolov
%T $T\overline T$ Deformation and the Light-Cone Gauge
%J Informatics and Automation
%D 2020
%P 120-140
%V 309
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a8/
%G ru
%F TRSPY_2020_309_a8
Sergey A. Frolov. $T\overline T$ Deformation and the Light-Cone Gauge. Informatics and Automation, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 120-140. http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a8/

[1] Alday L.F., Arutyunov G., Frolov S., “New integrable system of 2dim fermions from strings on $\mathrm {AdS}_5\times \mathrm S^5$”, J. High Energy Phys., 2006:01 (2006), 078 ; arXiv: hep-th/0508140 | MR

[2] Arutyunov G., Frolov S., “Integrable hamiltonian for classical strings on $\mathrm {AdS}_5\times \mathrm S^5$”, J. High Energy Phys., 2005:02 (2005), 059 ; arXiv: hep-th/0411089 | MR

[3] Arutyunov G., Frolov S., “On $\mathrm {AdS}_5\times \mathrm S^5$ string S-matrix”, Phys. Lett. B, 639:3–4 (2006), 378–382 ; arXiv: hep-th/0604043 | MR | Zbl

[4] Arutyunov G., Frolov S., “Uniform light-cone gauge for strings in $\mathrm {AdS}_5\times \mathrm S^5$: Solving $\mathfrak {su}(1|1)$ sector”, J. High Energy Phys., 2006:01 (2006), 055 ; arXiv: hep-th/0510208 | MR | MR

[5] Arutyunov G., Frolov S., “Foundations of the $\mathrm {AdS}_5\times \mathrm S^5$ superstring. I”, J. Phys. A: Math. Theor., 42:25 (2009), 254003 ; arXiv: 0901.4937 | MR | Zbl

[6] Arutyunov G., Frolov S., Zamaklar M., “Finite-size effects from giant magnons”, Nucl. Phys. B, 778:1–2 (2007), 1–35 ; arXiv: hep-th/0606126 | MR | Zbl

[7] Arutyunov G., Frolov S., Zamaklar M., “The Zamolodchikov–Faddeev algebra for $\mathrm {AdS}_5\times \mathrm S^5$ superstring”, J. High Energy Phys., 2007:04 (2007), 002 ; arXiv: hep-th/0612229 | MR

[8] Arutyunov G., van Tongeren S.J., “Double Wick rotating Green–Schwarz strings”, J. High Energy Phys., 2015:05 (2015), 027 ; arXiv: 1412.5137 | MR | MR

[9] Baggio M., Sfondrini A., “Strings on NS–NS backgrounds as integrable deformations”, Phys. Rev. D, 98:2 (2018), 021902 ; arXiv: 1804.01998 | MR

[10] Baggio M., Sfondrini A., Tartaglino-Mazzucchelli G., Walsh H., “On $T\overline T$ deformations and supersymmetry”, J. High Energy Phys., 2019:06 (2019), 063 ; arXiv: 1811.00533 | MR

[11] Bonelli G., Doroud N., Zhu M., “$T\overline T$-deformations in closed form”, J. High Energy Phys., 2018:06 (2018), 149 ; arXiv: 1804.10967 | MR | Zbl

[12] Cardy J., $T\overline T$ deformations of non-Lorentz invariant field theories, E-print, 2018, arXiv: 1809.07849 | Zbl

[13] Caselle M., Fioravanti D., Gliozzi F., Tateo R., “Quantisation of the effective string with TBA”, J. High Energy Phys., 2013:07 (2013), 071 ; arXiv: 1305.1278 | MR | Zbl

[14] Cavaglià A., Negro S., Szécsényi I.M., Tateo R., “$T\overline T$-deformed 2D quantum field theories”, J. High Energy Phys., 2016:10 (2016), 112 ; arXiv: 1608.05534 | MR | Zbl

[15] Chang C.-K., Ferko C., Sethi S., “Supersymmetry and $T\overline T$ deformations”, J. High Energy Phys., 2019:04 (2019), 131 ; arXiv: 1811.01895 | MR

[16] Conti R., Iannella L., Negro S., Tateo R., “Generalised Born–Infeld models, Lax operators and the $\mathrm T\overline {\mathrm T}$ perturbation”, J. High Energy Phys., 2018:11 (2018), 007 ; arXiv: 1806.11515 | MR

[17] Conti R., Negro S., Tateo R., “The $\mathrm T\overline {\mathrm T}$ perturbation and its geometric interpretation”, J. High Energy Phys., 2019:02 (2019), 085 ; arXiv: 1809.09593 | MR

[18] Conti R., Negro S., Tateo R., “Conserved currents and $\mathrm {T}\overline {\mathrm T}_s$ irrelevant deformations of 2D integrable field theories”, J. High Energy Phys., 2019:11 (2019), 120 ; arXiv: 1904.09141

[19] Dei A., Sfondrini A., “Integrable spin chain for stringy Wess–Zumino–Witten models”, J. High Energy Phys., 2018:07 (2018), 109 ; arXiv: 1806.00422 | MR | Zbl

[20] Dei A., Sfondrini A., “Integrable S matrix, mirror TBA and spectrum for the stringy $\mathrm {AdS}_3\times \mathrm S^3\times \mathrm S^3\times \mathrm S^1$ WZW model”, J. High Energy Phys., 2019:02 (2019), 072 ; arXiv: 1812.08195 | MR

[21] Dubovsky S., Flauger R., Gorbenko V., “Solving the simplest theory of quantum gravity”, J. High Energy Phys., 2012:09 (2012), 133 ; arXiv: 1205.6805 | MR | Zbl | MR

[22] Dubovsky S., Gorbenko V., Hernández-Chifflet G., “$T\overline T$ partition function from topological gravity”, J. High Energy Phys., 2018:09 (2018), 158 ; arXiv: 1805.07386 | MR | Zbl

[23] Dubovsky S., Gorbenko V., Mirbabayi M., “Asymptotic fragility, near $\mathrm {AdS}_2$ holography and $T\overline T$”, J. High Energy Phys., 2017:09 (2017), 136 ; arXiv: 1706.06604 | MR | Zbl

[24] Frolov S., Plefka J., Zamaklar M., “The $\mathrm {AdS}_5\times \mathrm S^5$ superstring in light-cone gauge and its Bethe equations”, J. Phys. A: Math. Gen., 39:41 (2006), 13037–13081 ; arXiv: hep-th/0603008 | MR | Zbl

[25] Guica M., “An integrable Lorentz-breaking deformation of two-dimensional CFTs”, SciPost Phys., 5:5 (2018), 048 ; arXiv: 1710.08415 | Zbl

[26] Hull C.M., “Lectures on $\mathcal W$-gravity, $\mathcal W$-geometry and $\mathcal W$-strings”, 1992 Summer School in High Energy Physics and Cosmology, ICTP Ser. Theor. Phys., 9, World Scientific, Singapore, 1993, 76–142 ; Preprint QMW-93-02, Queen Mary Westfield Coll., London, 1993; arXiv: hep-th/9302110

[27] Jiang H., Sfondrini A., Tartaglino-Mazzucchelli G., “$T\overline T$ deformations with $\mathcal N=(0,2)$ supersymmetry”, Phys. Rev. D, 100:4 (2019), 046017 ; arXiv: 1904.04760 | MR

[28] Jiang Y., Lectures on solvable irrelevant deformations of 2d quantum field theory, E-print, 2019, arXiv: 1904.13376

[29] Klose T., McLoughlin T., Roiban R., Zarembo K., “Worldsheet scattering in $\mathrm {AdS}_5\times S^5$”, J. High Energy Phys., 2007:03 (2007), 094 ; arXiv: hep-th/0611169 | MR

[30] Klose T., Zarembo K., “Bethe ansatz in stringy sigma models”, J. Stat. Mech., 2006:05 (2006), P05006 ; arXiv: hep-th/0603039 | MR | Zbl

[31] Kruczenski M., Tseytlin A.A., “Semiclassical relativistic strings in $S^5$ and long coherent operators in $\mathcal N=4$ SYM theory”, J. High Energy Phys., 2004:09 (2004), 038 ; arXiv: hep-th/0406189 | MR

[32] Maldacena J.M., “The large N limit of superconformal field theories and supergravity”, Adv. Theor. Math. Phys., 2:2 (1998), 231–252 ; Int. J. Theor. Phys., 38 (1999), 1113–1133 ; arXiv: hep-th/9711200 | MR | Zbl | MR | Zbl

[33] Melikyan A., Pereira E., Rivelles V.O., “On the equivalence theorem for integrable systems”, J. Phys. A: Math. Theor., 48:12 (2015), 125204 ; arXiv: 1412.1288 | MR | Zbl

[34] Melikyan A., Pinzul A., Rivelles V.O., Weber G., “Quantum integrability of the Alday–Arutyunov–Frolov model”, J. High Energy Phys., 2011:09 (2011), 092 ; arXiv: 1106.0512 | MR | Zbl

[35] Melikyan A., Weber G., “The $r$-matrix of the Alday–Arutyunov–Frolov model”, J. High Energy Phys., 2012:11 (2012), 165 ; arXiv: 1209.6042 | MR

[36] Melikyan A., Weber G., “Integrable theories and generalized graded Maillet algebras”, J. Phys. A: Math. Theor., 47:6 (2014), 065401 ; arXiv: 1307.2831 | MR | Zbl

[37] Melikyan A., Weber G., “On the quantization of continuous non-ultralocal integrable systems”, Nucl. Phys. B, 913 (2016), 716–746 ; arXiv: 1611.02622 | Zbl

[38] Sachdev S., Ye J., “Gapless spin-fluid ground state in a random quantum Heisenberg magnet”, Phys. Rev. Lett., 70:21 (1993), 3339–3342 ; arXiv: cond-mat/9212030

[39] Smirnov F.A., Zamolodchikov A.B., “On space of integrable quantum field theories”, Nucl. Phys. B, 915 (2017), 363–383 ; arXiv: 1608.05499 | MR | Zbl

[40] Zamolodchikov A.B., Expectation value of composite field $T\overline T$ in two-dimensional quantum field theory, E-print, 2004, arXiv: hep-th/0401146

[41] Zarembo K., “Worldsheet spectrum in $AdS_4/CFT_3$ correspondence”, J. High Energy Phys., 2009:04 (2009), 135; arXiv: 0903.1747