Symplectic Structures on Teichm\"uller Spaces $\mathfrak T_{g,s,n}$ and Cluster Algebras
Informatics and Automation, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 99-109

Voir la notice de l'article provenant de la source Math-Net.Ru

We recall the fat-graph description of Riemann surfaces $\Sigma _{g,s,n}$ and the corresponding Teichmüller spaces $\mathfrak T_{g,s,n}$ with $s>0$ holes and $n>0$ bordered cusps in the hyperbolic geometry setting. If $n>0$, we have a bijection between the set of Thurston shear coordinates and Penner's $\lambda $-lengths. Then we can define, on the one hand, a Poisson bracket on $\lambda $‑lengths that is induced by the Poisson bracket on shear coordinates introduced by V. V. Fock in 1997 and, on the other hand, a symplectic structure $\Omega_\mathrm{WP}$ on the set of extended shear coordinates that is induced by Penner's symplectic structure on $\lambda $-lengths. We derive the symplectic structure $\Omega_\mathrm{WP}$, which turns out to be similar to Kontsevich's symplectic structure for $\psi $-classes in complex analytic geometry, and demonstrate that it is indeed inverse to Fock's Poisson structure.
@article{TRSPY_2020_309_a6,
     author = {Leonid O. Chekhov},
     title = {Symplectic {Structures} on {Teichm\"uller} {Spaces} $\mathfrak T_{g,s,n}$ and {Cluster} {Algebras}},
     journal = {Informatics and Automation},
     pages = {99--109},
     publisher = {mathdoc},
     volume = {309},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a6/}
}
TY  - JOUR
AU  - Leonid O. Chekhov
TI  - Symplectic Structures on Teichm\"uller Spaces $\mathfrak T_{g,s,n}$ and Cluster Algebras
JO  - Informatics and Automation
PY  - 2020
SP  - 99
EP  - 109
VL  - 309
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a6/
LA  - ru
ID  - TRSPY_2020_309_a6
ER  - 
%0 Journal Article
%A Leonid O. Chekhov
%T Symplectic Structures on Teichm\"uller Spaces $\mathfrak T_{g,s,n}$ and Cluster Algebras
%J Informatics and Automation
%D 2020
%P 99-109
%V 309
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a6/
%G ru
%F TRSPY_2020_309_a6
Leonid O. Chekhov. Symplectic Structures on Teichm\"uller Spaces $\mathfrak T_{g,s,n}$ and Cluster Algebras. Informatics and Automation, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 99-109. http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a6/