Symplectic Structures on Teichm\"uller Spaces $\mathfrak T_{g,s,n}$ and Cluster Algebras
Informatics and Automation, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 99-109.

Voir la notice de l'article provenant de la source Math-Net.Ru

We recall the fat-graph description of Riemann surfaces $\Sigma _{g,s,n}$ and the corresponding Teichmüller spaces $\mathfrak T_{g,s,n}$ with $s>0$ holes and $n>0$ bordered cusps in the hyperbolic geometry setting. If $n>0$, we have a bijection between the set of Thurston shear coordinates and Penner's $\lambda $-lengths. Then we can define, on the one hand, a Poisson bracket on $\lambda $‑lengths that is induced by the Poisson bracket on shear coordinates introduced by V. V. Fock in 1997 and, on the other hand, a symplectic structure $\Omega_\mathrm{WP}$ on the set of extended shear coordinates that is induced by Penner's symplectic structure on $\lambda $-lengths. We derive the symplectic structure $\Omega_\mathrm{WP}$, which turns out to be similar to Kontsevich's symplectic structure for $\psi $-classes in complex analytic geometry, and demonstrate that it is indeed inverse to Fock's Poisson structure.
@article{TRSPY_2020_309_a6,
     author = {Leonid O. Chekhov},
     title = {Symplectic {Structures} on {Teichm\"uller} {Spaces} $\mathfrak T_{g,s,n}$ and {Cluster} {Algebras}},
     journal = {Informatics and Automation},
     pages = {99--109},
     publisher = {mathdoc},
     volume = {309},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a6/}
}
TY  - JOUR
AU  - Leonid O. Chekhov
TI  - Symplectic Structures on Teichm\"uller Spaces $\mathfrak T_{g,s,n}$ and Cluster Algebras
JO  - Informatics and Automation
PY  - 2020
SP  - 99
EP  - 109
VL  - 309
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a6/
LA  - ru
ID  - TRSPY_2020_309_a6
ER  - 
%0 Journal Article
%A Leonid O. Chekhov
%T Symplectic Structures on Teichm\"uller Spaces $\mathfrak T_{g,s,n}$ and Cluster Algebras
%J Informatics and Automation
%D 2020
%P 99-109
%V 309
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a6/
%G ru
%F TRSPY_2020_309_a6
Leonid O. Chekhov. Symplectic Structures on Teichm\"uller Spaces $\mathfrak T_{g,s,n}$ and Cluster Algebras. Informatics and Automation, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 99-109. http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a6/

[1] Alekseev A.Yu., Malkin A.Z., “Symplectic structure of the moduli space of flat connection on a Riemann surface”, Commun. Math. Phys., 169:1 (1995), 99–119 | MR | Zbl

[2] Berenstein A., Zelevinsky A., “Quantum cluster algebras”, Adv. Math., 195:2 (2005), 405–455 ; arXiv: math/0404446 | MR | Zbl

[3] Bertola M., Korotkin D., Extended Goldman symplectic structure in Fock–Goncharov coordinates, E-print, 2019, arXiv: 1910.06744

[4] Bonahon F., “Shearing hyperbolic surfaces, bending pleated surfaces and Thurston's symplectic form”, Ann. Fac. Sci. Toulouse. Math. Sér. 6, 5:2 (1996), 233–297 | MR | Zbl

[5] Chekhov L., Mazzocco M., Colliding holes in Riemann surfaces and quantum cluster algebras, E-print, 2015, arXiv: 1509.07044 | MR

[6] Chekhov L.O., Mazzocco M., Rubtsov V.N., “Painlevé monodromy manifolds, decorated character varieties, and cluster algebras”, Int. Math. Res. Not., 2017:24 (2017), 7639–7691 | MR | Zbl

[7] Chekhov L., Shapiro M., “Teichmüller spaces of Riemann surfaces with orbifold points of arbitrary order and cluster variables”, Int. Math. Res. Not., 2014:10 (2014), 2746–2772 ; arXiv: 1111.3963 | MR | Zbl

[8] Faddeev L.D., “Discrete Heisenberg–Weyl group and modular group”, Lett. Math. Phys., 34:3 (1995), 249–254 | MR | Zbl

[9] Fock V.V., Description of moduli space of projective structures via fat graphs, E-print, 1993, arXiv: hep-th/9312193 | Zbl

[10] Fock V.V., Dual Teichmüller spaces, E-print, 1997, arXiv: ; arXiv: dg-ga/9702018v3math/9908165

[11] V. V. Fock and L. O. Chekhov, “A quantum Techmüller space”, Theor. Math. Phys., 120:3 (1999), 1245–1259 | MR | Zbl

[12] V. V. Fock and L. O. Chekhov, “Quantum mapping class group, pentagon relation, and geodesics”, Proc. Steklov Inst. Math., 226 (1999), 149–163 | MR | Zbl

[13] Fock V., Goncharov A., “Moduli spaces of local systems and higher Teichmüller theory”, Publ. math. Inst. hautes étud. sci., 103 (2006), 1–211 ; arXiv: math/0311149v4 | MR | Zbl

[14] Fock V.V., Rosly A.A., “Moduli space of flat connections as a Poisson manifold”, Int. J. Mod. Phys. B, 11:26–27 (1997), 3195–3206 | MR | Zbl

[15] Fomin S., Shapiro M., Thurston D., “Cluster algebras and triangulated surfaces. Part I: Cluster complexes”, Acta math., 201:1 (2008), 83–146 | MR | Zbl

[16] Fomin S., Thurston D., Cluster algebras and triangulated surfaces. Part II: Lambda lengths, Mem. AMS, 255, N 1223, Amer. Math. Soc., Providence, RI, 2018 ; arXiv: 1210.5569 | MR

[17] Fomin S., Zelevinsky A., “Cluster algebras. I: Foundations”, J. Amer. Math. Soc., 15:2 (2002), 497–529 | MR | Zbl

[18] Fomin S., Zelevinsky A., “Cluster algebras. II: Finite type classification”, Invent. math., 154:1 (2003), 63–121 | MR | Zbl

[19] Goldman W.M., “Invariant functions on Lie groups and Hamiltonian flows of surface group representations”, Invent. math., 85:2 (1986), 263–302 | MR | Zbl

[20] Kashaev R.M., “Quantization of Teichmüller spaces and the quantum dilogarithm”, Lett. Math. Phys., 43:2 (1998), 105–115 ; arXiv: q-alg/9705021 | MR | Zbl

[21] Musiker G., Schiffler R., Williams L., “Positivity for cluster algebras from surfaces”, Adv. Math., 227:6 (2011), 2241–2308 | MR | Zbl

[22] Musiker G., Williams L., “Matrix formulae and skein relations for cluster algebras from surfaces”, Int. Math. Res. Not., 2013:13 (2013), 2891–2944 | MR | Zbl

[23] Papadopoulos A., Penner R.C., “The Weil–Petersson symplectic structure at Thurston's boundary”, Trans. Amer. Math. Soc., 335:2 (1993), 891–904 | MR | Zbl

[24] Penner R.C., “The decorated Teichmüller space of punctured surfaces”, Commun. Math. Phys., 113:2 (1987), 299–339 | MR | Zbl

[25] Penner R.C., “Weil–Petersson volumes”, J. Diff. Geom., 35:3 (1992), 559–608 | MR | Zbl

[26] Thurston W.P., Minimal stretch maps between hyperbolic surfaces, E-print, 1998, arXiv: math/9801039