Flag Manifold Sigma Models and Nilpotent Orbits
Informatics and Automation, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 89-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study flag manifold sigma models that admit a zero-curvature representation. We show that these models can be naturally viewed as interacting (holomorphic and antiholomorphic) $\beta \gamma $-systems. In addition, using the theory of nilpotent orbits of complex Lie groups, we establish a relation of flag manifold sigma models to the principal chiral model.
@article{TRSPY_2020_309_a5,
     author = {Dmitri V. Bykov},
     title = {Flag {Manifold} {Sigma} {Models} and {Nilpotent} {Orbits}},
     journal = {Informatics and Automation},
     pages = {89--98},
     publisher = {mathdoc},
     volume = {309},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a5/}
}
TY  - JOUR
AU  - Dmitri V. Bykov
TI  - Flag Manifold Sigma Models and Nilpotent Orbits
JO  - Informatics and Automation
PY  - 2020
SP  - 89
EP  - 98
VL  - 309
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a5/
LA  - ru
ID  - TRSPY_2020_309_a5
ER  - 
%0 Journal Article
%A Dmitri V. Bykov
%T Flag Manifold Sigma Models and Nilpotent Orbits
%J Informatics and Automation
%D 2020
%P 89-98
%V 309
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a5/
%G ru
%F TRSPY_2020_309_a5
Dmitri V. Bykov. Flag Manifold Sigma Models and Nilpotent Orbits. Informatics and Automation, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 89-98. http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a5/

[1] Alekseevsky D., Arvanitoyeorgos A., “Riemannian flag manifolds with homogeneous geodesics”, Trans. Amer. Math. Soc., 359:8 (2007), 3769–3789 | MR | Zbl

[2] Brodbeck O., Zagermann M., “Dimensionally reduced gravity, Hermitian symmetric spaces and the Ashtekar variables”, Classical Quantum Gravity, 17:14 (2000), 2749–2763 ; arXiv: gr-qc/9911118 | MR | Zbl

[3] Bykov D., “Complex structures and zero-curvature equations for $\sigma $-models”, Phys. Lett. B, 760 (2016), 341–344 ; arXiv: 1605.01093 | Zbl

[4] D. V. Bykov, “A gauged linear formulation for flag-manifold $\sigma $-models”, Theor. Math. Phys., 193:3 (2017), 1737–1753 | MR | Zbl

[5] D. V. Bykov, “The $1/N$-expansion for flag-manifold $\sigma $-models”, Theor. Math. Phys., 197:3 (2018), 1691–1700 | MR | MR | Zbl

[6] Bykov D., “Flag manifold $\sigma $-models: The $\frac 1N$-expansion and the anomaly two-form”, Nucl. Phys. B, 941 (2019), 316–360 ; arXiv: 1901.02861 | MR | Zbl

[7] Bykov D., Quantum flag manifold $\sigma $-models and Hermitian Ricci flow, E-print, 2020, arXiv: 2006.14124

[8] Bytsko A.G., “Predstavlenie nulevoi krivizny dlya nelineinoi $O(3)$ sigma-modeli”, Zap. nauch. sem. POMI, 215 (1994), 100–114 ; arXiv: ; A. G. Bytsko, “The zero-curvature representation for the nonlinear $O(3)$ sigma-model”, J. Math. Sci., 85:1 (1997), 1619–1628 hep-th/9403101 | MR

[9] Costello K., Witten E., Yamazaki M., “Gauge theory and integrability. I”, ICCM Not., 6:1 (2018), 46–119 ; arXiv: 1709.09993 | MR | Zbl

[10] Costello K., Witten E., Yamazaki M., “Gauge theory and integrability. II”, ICCM Not., 6:1 (2018), 120–146 ; arXiv: 1802.01579 | MR | Zbl

[11] Costello K., Yamazaki M., Gauge theory and integrability. III, E-print, 2019, arXiv: 1908.02289 | MR

[12] Crooks P., Complex adjoint orbits in Lie theory and geometry, E-print, 2017, arXiv: 1703.03390 | MR | Zbl

[13] Delduc F., Kameyama T., Lacroix S., Magro M., Vicedo B., Ultralocal Lax connection for para-complex $\mathbb Z_T$‐cosets, E-print, 2019, arXiv: 1909.00742 | MR

[14] Delduc F., Magro M., Vicedo B., “On classical $q$-deformations of integrable $\sigma $-models”, J. High Energy Phys., 2013:11 (2013), 192 ; arXiv: 1308.3581 | MR | Zbl

[15] Fateev V.A., “The sigma model (dual) representation for a two-parameter family of integrable quantum field theories”, Nucl. Phys. B, 473:3 (1996), 509–538 | MR | Zbl

[16] Fateev V.A., Onofri E., Zamolodchikov A.B., “Integrable deformations of the $\mathrm O(3)$ sigma model. The sausage model”, Nucl. Phys. B, 406:3 (1993), 521–565 | MR | Zbl

[17] Ginzburg V., Geometric methods in the representation theory of Hecke algebras and quantum groups, E-print, 1998, arXiv: math/9802004 | MR

[18] Hoare B., Levine N., Tseytlin A.A., “Integrable 2d sigma models: Quantum corrections to geometry from RG flow”, Nucl. Phys. B, 949 (2019), 114798 ; arXiv: 1907.04737 | MR | Zbl

[19] Klimčík C., “On integrability of the Yang–Baxter $\sigma $-model”, J. Math. Phys., 50:4 (2009), 043508 ; arXiv: 0802.3518 | MR | Zbl

[20] Klimčík C., “Integrability of the bi-Yang–Baxter $\sigma $-model”, Lett. Math. Phys., 104:9 (2014), 1095–1106 ; arXiv: 1402.2105 | MR | Zbl

[21] Lukyanov S.L., “The integrable harmonic map problem versus Ricci flow”, Nucl. Phys. B, 865:2 (2012), 308–329 ; arXiv: 1205.3201 | MR | Zbl

[22] Nekrasov N.A., Lectures on curved beta–gamma systems, pure spinors, and anomalies, E-print, arXiv: hep-th/0511008

[23] Witten E., “Topological sigma models”, Commun. Math. Phys., 118:3 (1988), 411–449 | MR | Zbl

[24] Witten E., “Two-dimensional models with $(0,2)$ supersymmetry: Perturbative aspects”, Adv. Theor. Math. Phys., 11:1 (2007), 1–63 ; arXiv: hep-th/0504078 | MR | Zbl