Hidden Supersymmetry as a Key to Constructing Low-Energy Superfield Effective Actions
Informatics and Automation, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 66-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this review paper, we outline and exemplify the general method of constructing the superfield low-energy quantum effective action of supersymmetric Yang–Mills (SYM) theories with extended supersymmetry in the Coulomb phase, grounded upon the requirement of invariance under the non-manifest (hidden) part of the underlying supersymmetry. In this way we restore the $\mathcal N=4$ supersymmetric effective actions in $4D$, $\mathcal N=4$ SYM, $\mathcal N=2$ supersymmetric effective actions in $5D$, $\mathcal N=2$ SYM and $\mathcal N=(1,1)$ supersymmetric effective actions in $6D$, $\mathcal N=(1,1)$ SYM theories. The manifest off-shell fractions of the full supersymmetry are, respectively, $4D$, $\mathcal N=2$, $5D$, $\mathcal N=1$ and $6D$, $\mathcal N=(1,0)$ supersymmetries. In all cases the effective actions depend on the corresponding covariant superfield SYM strengths and the hypermultiplet superfields. The whole construction essentially exploits a power of the harmonic superspace formalism.
@article{TRSPY_2020_309_a4,
     author = {I. L. Buchbinder and E. A. Ivanov},
     title = {Hidden {Supersymmetry} as a {Key} to {Constructing} {Low-Energy} {Superfield} {Effective} {Actions}},
     journal = {Informatics and Automation},
     pages = {66--88},
     publisher = {mathdoc},
     volume = {309},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a4/}
}
TY  - JOUR
AU  - I. L. Buchbinder
AU  - E. A. Ivanov
TI  - Hidden Supersymmetry as a Key to Constructing Low-Energy Superfield Effective Actions
JO  - Informatics and Automation
PY  - 2020
SP  - 66
EP  - 88
VL  - 309
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a4/
LA  - ru
ID  - TRSPY_2020_309_a4
ER  - 
%0 Journal Article
%A I. L. Buchbinder
%A E. A. Ivanov
%T Hidden Supersymmetry as a Key to Constructing Low-Energy Superfield Effective Actions
%J Informatics and Automation
%D 2020
%P 66-88
%V 309
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a4/
%G ru
%F TRSPY_2020_309_a4
I. L. Buchbinder; E. A. Ivanov. Hidden Supersymmetry as a Key to Constructing Low-Energy Superfield Effective Actions. Informatics and Automation, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 66-88. http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a4/

[1] Banin A.T., Buchbinder I.L., Pletnev N.G., “One-loop effective action for $\mathcal N=4$ SYM theory in the hypermultiplet sector: Leading low-energy approximation and beyond”, Phys. Rev. D, 68:6 (2003), 065024 ; arXiv: hep-th/0304046

[2] Belyaev D.V., Samsonov I.B., “Wess–Zumino term in the $\mathcal N=4$ SYM effective action revisited”, J. High Energy Phys., 2011:04 (2011), 112 ; arXiv: 1103.5070 | MR | Zbl

[3] Belyaev D.V., Samsonov I.B., “Bi-harmonic superspace for $\mathcal N=4$ $d=4$ super Yang–Mills”, J. High Energy Phys., 2011:09 (2011), 056 ; arXiv: 1106.0611 | MR | Zbl

[4] Bergshoeff E.A., de Roo M., Bilal A., Sevrin A., “Supersymmetric non-abelian Born–Infeld revisited”, J. High Energy Phys., 2001:07 (2001), 029 ; arXiv: hep-th/0105274 | MR

[5] Blumenhagen R., Körs B., Lüst D., Stieberger S., “Four-dimensional string compactifications with D-branes, orientifolds and fluxes”, Phys. Rep., 445:1–6 (2007), 1–193 ; arXiv: hep-th/0610327 | MR

[6] Bork L.V., Kazakov D.I., Kompaniets M.V., Tolkachev D.M., Vlasenko D.E., “Divergences in maximal supersymmetric Yang–Mills theories in diverse dimensions”, J. High Energy Phys., 2015:11 (2015), 059 ; arXiv: 1508.05570 | MR

[7] Bossard G., Howe P.S., Stelle K.S., “The ultra-violet question in maximally supersymmetric field theories”, Gen. Relativ. Gravitation, 41:4 (2009), 919–981 ; arXiv: 0901.4661 | MR | Zbl

[8] Bossard G., Howe P.S., Stelle K.S., “A note on the UV behaviour of maximally supersymmetric Yang–Mills theories”, Phys. Lett. B, 682:1 (2009), 137–142 ; arXiv: 0908.3883 | MR

[9] Bossard G., Ivanov E., Smilga A., “Ultraviolet behavior of $6D$ supersymmetric Yang–Mills theories and harmonic superspace”, J. High Energy Phys., 2015:12 (2015), 085 ; arXiv: 1509.08027 | MR

[10] E. I. Buchbinder, I. L. Buchbinder, E. A. Ivanov, S. M. Kuzenko, and B. A. Ovrut, “Low-energy effective action in $N=2$ supersymmetric field theories”, Phys. Part. Nucl., 32:5 (2001), 641–674 | MR

[11] Buchbinder E.I., Buchbinder I.L., Kuzenko S.M., “Non-holomorphic effective potential in $N=4$ $SU(n)$ SYM”, Phys. Lett. B, 446:3–4 (1999), 216–223 ; arXiv: hep-th/9810239 | MR | Zbl

[12] Buchbinder I.L., Buchbinder E.I., Kuzenko S.M., Ovrut B.A., “The background field method for $N=2$ super Yang–Mills theories in harmonic superspace”, Phys. Lett. B, 417:1–2 (1998), 61–71 ; arXiv: hep-th/9704214 | MR

[13] Buchbinder I.L., Ivanov E.A., “Complete $\mathcal N=4$ structure of low-energy effective action in $\mathcal N=4$ super-Yang–Mills theories”, Phys. Lett. B, 524:1–2 (2002), 208–216 ; arXiv: hep-th/0111062 | MR | Zbl

[14] Buchbinder I.L., Ivanov E.A., Lechtenfeld O., Pletnev N.G., Samsonov I.B., Zupnik B.M., “ABJM models in $\mathcal N=3$ harmonic superspace”, J. High Energy Phys., 2009:03 (2009), 096 ; arXiv: 0811.4774 | MR

[15] Buchbinder I.L., Ivanov E.A., Merzlikin B.S., “Leading low-energy effective action in $6D$, $\mathcal N=(1,1)$ SYM theory”, J. High Energy Phys., 2018:09 (2018), 039 ; arXiv: 1711.03302 | MR

[16] Buchbinder I.L., Ivanov E.A., Merzlikin B.S., Stepanyantz K.V., “One-loop divergences in the $6D$, $\mathcal N=(1,0)$ abelian gauge theory”, Phys. Lett. B, 763 (2016), 375–381 ; arXiv: 1609.00975 | MR | Zbl

[17] Buchbinder I.L., Ivanov E.A., Merzlikin B.S., Stepanyantz K.V., “One-loop divergences in $6D$, $\mathcal N=(1,0)$ SYM theory”, J. High Energy Phys., 2017:01 (2017), 128 ; arXiv: 1612.03190 | MR | Zbl

[18] Buchbinder I.L., Ivanov E.A., Merzlikin B.S., Stepanyantz K.V., “Supergraph analysis of the one-loop divergences in $6D$, $\mathcal N=(1,0)$ and $\mathcal N=(1,1)$ gauge theories”, Nucl. Phys. B, 921 (2017), 127–158 ; arXiv: 1704.02530 | MR | Zbl

[19] Buchbinder I.L., Ivanov E.A., Merzlikin B.S., Stepanyantz K.V., “On the two-loop divergences of the 2-point hypermultiplet supergraphs for $6D$, $\mathcal N=(1,1)$ SYM theory”, Phys. Lett. B, 778 (2018), 252–255 ; arXiv: 1711.11514 | MR | Zbl

[20] Buchbinder I., Ivanov E., Merzlikin B., Stepanyantz K., “Harmonic superspace approach to the effective action in six-dimensional supersymmetric gauge theories”, Symmetry, 11:1 (2019), 68 ; arXiv: 1812.02681 | MR | Zbl

[21] Buchbinder I.L., Ivanov E.A., Petrov A.Yu., “Complete low-energy effective action in $\mathcal N=4$ SYM: A direct $\mathcal N=2$ supergraph calculation”, Nucl. Phys. B, 653:1–2 (2003), 64–84 ; arXiv: hep-th/0210241 | MR | Zbl

[22] I. L. Buchbinder, E. A. Ivanov, and N. G. Pletnev, “Superfield approach to the construction of effective action in quantum field theory with extended supersymmetry”, Phys. Part. Nucl., 47:3 (2016), 291–369 | MR

[23] Buchbinder I.L., Ivanov E.A., Samsonov I.B., “The low-energy $\mathcal N=4$ SYM effective action in diverse harmonic superspaces”, Phys. Part. Nucl., 48:3 (2017), 333–388 ; arXiv: 1603.02768

[24] Buchbinder I.L., Ivanov E.A., Samsonov I.B., “Low-energy effective action in $5D$, $\mathcal N=2$ supersymmetric gauge theory”, Nucl. Phys. B, 940 (2019), 54–62 ; arXiv: 1812.07206 | Zbl

[25] Buchbinder I.L., Ivanov E.A., Samsonov I.B., Zupnik B.M., “Superconformal $\mathcal N=3$ SYM low-energy effective action”, J. High Energy Phys., 2012:01 (2012), 001 ; arXiv: 1111.4145 | MR | Zbl

[26] Buchbinder I.L., Kuzenko S.M., Ideas and methods of supersymmetry and supergravity, or a walk through superspace, Inst. Phys., Bristol, 1995; 2nd\penalty 10000 ed., 1998 | MR | Zbl

[27] Buchbinder I.L., Kuzenko S.M., “Comments on the background field method in harmonic superspace: Non-holomorphic corrections in $N=4$ SYM”, Mod. Phys. Lett. A, 13:20 (1998), 1623–1635 ; arXiv: hep-th/9804168 | MR

[28] Buchbinder I.L., Kuzenko S.M., Ovrut B.A., “On the $D=4$, $N=2$ non-renormalization theorem”, Phys. Lett. B, 433:3–4 (1998), 335–345 ; arXiv: hep-th/9710142

[29] Buchbinder I., Kuzenko S., Ovrut B., “Covariant harmonic supergraphity for $N=2$ super Yang–Mills theories”, Supersymmetries and quantum symmetries, Lect. Notes Phys., 524, ed. by J. Wess, E.A. Ivanov, Springer, Berlin, 1999, 21–36 | MR

[30] Buchbinder I.L., Kuzenko S.M., Tseytlin A.A., “Low-energy effective actions in $\mathcal N=2,4$ superconformal theories in four dimensions”, Phys. Rev. D, 62:4 (2000), 045001 ; arXiv: hep-th/9911221 | MR

[31] Buchbinder I.L., Petrov A.Yu., Tseytlin A.A., “Two-loop $\mathcal N=4$ super-Yang–Mills effective action and interaction between D3-branes”, Nucl. Phys. B, 621:1–2 (2002), 179–207 ; arXiv: hep-th/0110173 | MR | Zbl

[32] Buchbinder I.L., Pletnev N.G., “Construction of one-loop $\mathcal N=4$ SYM effective action in the harmonic superspace approach”, J. High Energy Phys., 2005:09 (2005), 073 ; arXiv: hep-th/0504216 | MR

[33] Buchbinder I.L., Pletnev N.G., “Hypermultiplet dependence of one-loop effective action in the $\mathcal N=2$ superconformal theories”, J. High Energy Phys., 2007:04 (2007), 096 ; arXiv: hep-th/0611145 | MR

[34] Buchbinder I.L., Pletnev N.G., “Effective actions in $\mathcal N=1$, D5 supersymmetric gauge theories: Harmonic superspace approach”, J. High Energy Phys., 2015:11 (2015), 130 ; arXiv: 1510.02563 | MR

[35] Buchbinder I.L., Pletnev N.G., Samsonov I.B., “Effective action of three-dimensional extended supersymmetric matter on gauge superfield background”, J. High Energy Phys., 2010:04 (2010), 124 ; arXiv: 1003.4806 | MR | Zbl

[36] Buchbinder I.L., Pletnev N.G., Samsonov I.B., “Low-energy effective actions in three-dimensional extended SYM theories”, J. High Energy Phys., 2011:01 (2011), 121 ; arXiv: 1010.4967 | MR | Zbl

[37] Chepelev I., Tseytlin A.A., “Interactions of type IIB D-branes from the D-instanton matrix model”, Nucl. Phys. B, 511:3 (1998), 629–646 ; arXiv: hep-th/9705120 | MR | Zbl

[38] De Wit B., Grisaru M.T., Roček M., “Nonholomorphic corrections to the one-loop $N=2$ super Yang–Mills action”, Phys. Lett. B, 374:4 (1996), 297–303 ; arXiv: hep-th/9601115 | MR

[39] Dine M., Seiberg N., “Comments on higher derivative operators in some SUSY field theories”, Phys. Lett. B, 409:1–4 (1997), 239–244 ; arXiv: hep-th/9705057 | MR

[40] Douglas M.R., “On $D=5$ super Yang–Mills theory and $(2,0)$ theory”, J. High Energy Phys., 2011:02 (2011), 011 ; arXiv: 1012.2880 | MR | Zbl

[41] Drummond J.M., Heslop P.J., Howe P.S., Kerstan S.F., “Integral invariants in $\mathcal N=4$ SYM and the effective action for coincident D-branes”, J. High Energy Phys., 2003:08 (2003), 016 ; arXiv: hep-th/0305202 | MR

[42] Fradkin E.S., Tseytlin A.A., “Quantum properties of higher dimensional and dimensionally reduced supersymmetric theories”, Nucl. Phys. B, 227:2 (1983), 252–290 | MR

[43] Galperin A., Ivanov E., Kalitzin S., Ogievetsky V., Sokatchev E., “Unconstrained $N=2$ matter, Yang–Mills and supergravity theories in harmonic superspace”, Classical Quantum Gravity, 1:5 (1984), 469–498 | MR

[44] Galperin A., Ivanov E., Ogievetsky V., Sokatchev E., “Harmonic supergraphs: Green functions”, Classical Quantum Gravity, 2:5 (1985), 601–616 | MR | Zbl

[45] Galperin A., Ivanov E., Ogievetsky V., Sokatchev E., “Harmonic supergraphs: Feynman rules and examples”, Classical Quantum Gravity, 2:5 (1985), 617–630 | MR | Zbl

[46] Galperin A.S., Ivanov E.A., Ogievetsky V.I., Sokatchev E.S., Harmonic superspace, Cambridge Univ. Press, Cambridge, 2001 | MR | Zbl

[47] Giveon A., Kutasov D., “Brane dynamics and gauge theory”, Rev. Mod. Phys., 71:4 (1999), 983–1084 ; arXiv: hep-th/9802067 | MR | Zbl

[48] Gonzalez-Rey F., Kulik B., Park I.Y., Roček M., “Self-dual effective action of $N=4$ super-Yang–Mills”, Nucl. Phys. B, 544:1–2 (1999), 218–242 ; arXiv: hep-th/9810152 | MR | Zbl

[49] Gonzalez-Rey F., Roček M., “Nonholomorphic $N=2$ terms in $N=4$ super Yang–Mills theory: 1-loop calculation in $N=2$ superspace”, Phys. Lett. B, 434:3–4 (1998), 303–311 ; arXiv: hep-th/9804010 | MR

[50] Grimm T.W., Ha T.-W., Klemm A., Klevers D., “The D5-brane effective action and superpotential in $\mathcal N=1$ compactifications”, Nucl. Phys. B, 816:1–2 (2009), 139–184 ; arXiv: 0811.2996 | MR | Zbl

[51] Howe P.S., Stelle K.S., “Ultraviolet divergences in higher dimensional supersymmetric Yang–Mills theories”, Phys. Lett. B, 137:3–4 (1984), 175–180 | MR

[52] Howe P.S., Stelle K.S., “Supersymmetry counterterms revisited”, Phys. Lett. B, 554:3–4 (2003), 190–196 ; arXiv: hep-th/0211279 | MR | Zbl

[53] Howe P.S., Stelle K.S., West P.C., “$N=1$, $d=6$ harmonic superspace”, Classical Quantum Gravity, 2:6 (1985), 815–821 | MR | Zbl

[54] Ivanov E.A., Smilga A.V., Zupnik B.M., “Renormalizable supersymmetric gauge theory in six dimensions”, Nucl. Phys. B, 726:1–2 (2005), 131–148 ; arXiv: hep-th/0505082 | MR | Zbl

[55] V. K. Krivoshchekov, A. A. Slavnov, and L. O. Chekhov, “Effective Lagrangian for supersymmetric quantum chromodynamics and the problem of dynamical breaking of supersymmetry”, Theor. Math. Phys., 72:1 (1987), 686–693 | MR

[56] Kuzenko S.M., “Self-dual effective action of $\mathcal N=4$ SYM revisited”, J. High Energy Phys., 2005:03 (2005), 008 ; arXiv: hep-th/0410128 | MR

[57] Kuzenko S.M., “Five-dimensional supersymmetric Chern–Simons action as a hypermultiplet quantum correction”, Phys. Lett. B, 644:1 (2007), 88–93 ; arXiv: hep-th/0609078 | MR | Zbl

[58] Kuzenko S.M., Linch W.D., III, “On five-dimensional superspaces”, J. High Energy Phys., 2006:02 (2006), 038 | MR

[59] Kuzenko S.M., McArthur I.N., “Effective action of $\mathcal N=4$ super Yang–Mills: $\mathcal N=2$ superspace approach”, Phys. Lett. B, 506:1–2 (2001), 140–146 ; arXiv: hep-th/0101127 | MR | Zbl

[60] Kuzenko S.M., McArthur I.N., “Hypermultiplet effective action: $\mathcal N=2$ superspace approach”, Phys. Lett. B, 513:1–2 (2001), 213–222 ; arXiv: hep-th/0105121 | MR | Zbl

[61] Kuzenko S.M., McArthur I.N., “On the two-loop four-derivative quantum corrections in 4D $\mathcal N=2$ superconformal field theories”, Nucl. Phys. B, 683:1–2 (2004), 3–26 ; arXiv: hep-th/0310025 | MR | Zbl

[62] Lambert N., Papageorgakis C., Schmidt-Sommerfeld M., “M5-branes, D4-branes and quantum 5D super-Yang–Mills”, J. High Energy Phys., 2011:01 (2011), 083 ; arXiv: 1012.2882 | MR | Zbl

[63] Lambert N., Papageorgakis C., Schmidt-Sommerfeld M., “Deconstructing $(2,0)$ proposals”, Phys. Rev. D, 88:2 (2013), 026007 ; arXiv: 1212.3337

[64] Lindström U., Gonzalez-Rey F., Roček M., von Unge R., “On $N=2$ low energy effective actions”, Phys. Lett. B, 388:3 (1996), 581–587 ; arXiv: hep-th/9607089 | MR | Zbl

[65] Lowe D.A., von Unge R., “Constraints on higher derivative operators in maximally supersymmetric gauge theory”, J. High Energy Phys., 1998:11 (1998), 014 ; arXiv: hep-th/9811017 | MR

[66] Markus N., Sagnotti A., “A test of finiteness predictions for supersymmetric theories”, Phys. Lett. B, 135:1–3 (1984), 85–90

[67] Markus N., Sagnotti A., “The ultraviolet behavior of $N=4$ Yang–Mills and the power counting of extended superspace”, Nucl. Phys. B, 256 (1985), 77–108

[68] Periwal V., von Unge R., “Accelerating D-branes”, Phys. Lett. B, 430:1–2 (1998), 71–76 ; arXiv: hep-th/9801121 | MR

[69] Samsonov I.B., “Low-energy effective action in two-dimensional SQED: A two-loop analysis”, J. High Energy Phys., 2017:07 (2017), 146 ; arXiv: 1704.04148 | MR | Zbl

[70] Seiberg N., “Notes on theories with 16 supercharges”, Nucl. Phys. B. Proc. Suppl., 67:1–3 (1998), 158–171 ; arXiv: hep-th/9705117 | MR | Zbl

[71] A. A. Slavnov, “Ward identities in gauge theories”, Theor. Math. Phys., 10:2 (1972), 99–104

[72] A. A. Slavnov, “Renormalization of supersymmetric quantum electrodynamics”, Theor. Math. Phys., 23:1 (1975), 305–310

[73] Slavnov A.A., “Renormalization of supersymmetric gauge theories. II: Non-Abelian case”, Nucl. Phys. B, 97:1 (1975), 155–164 | MR

[74] Slavnov A.A., Chekhov L.O., Krivoshchekov V.K., “SUSY QCD effective action in the large $N(c)$ limit”, Phys. Lett. B, 194:2 (1987), 236–240

[75] Taylor J.C., “Ward identities and charge renormalization of the Yang–Mills field”, Nucl. Phys. B, 33:2 (1971), 436–444 | MR

[76] Tseytlin A.A., “On non-abelian generalisation of the Born–Infeld action in string theory”, Nucl. Phys. B, 501:1 (1997), 41–52 ; arXiv: hep-th/9701125 | MR | Zbl

[77] Tseytlin A.A., Casarin L., “One-loop $\beta $-functions in 4-derivative gauge theory in 6 dimensions”, J. High Energy Phys., 2019:08 (2019), 159 ; arXiv: 1907.02501 | MR | Zbl

[78] Weinberg S., The quantum theory of fields, v. 2, Modern applications, Cambridge Univ. Press, Cambridge, 1996 | MR

[79] B. M. Zupnik, “Six-dimensional supergauge theories in harmonic superspace”, Sov. J. Nucl. Phys., 44:3 (1986), 512–517

[80] Zupnik B.M., “The action of the supersymmetric $N=2$ gauge theory in harmonic superspace”, Phys. Lett. B, 183:2 (1987), 175–176 | MR