From Slavnov--Taylor Identities to the Renormalization of Gauge Theories
Informatics and Automation, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 338-345.

Voir la notice de l'article provenant de la source Math-Net.Ru

An important, and highly non-trivial, problem is proving the renormalizability and unitarity of quantized non-Abelian gauge theories. Lee and Zinn-Justin have given the first proof of the renormalizability of non-Abelian gauge theories in the spontaneously broken phase. An essential ingredient in the proof has been the observation, by Slavnov and Taylor, of a non-linear, non-local symmetry of the quantized theory, a direct consequence of Faddeev and Popov's quantization procedure. After the introduction of non-physical fermions to represent the Faddeev–Popov determinant, this symmetry has led to the Becchi–Rouet–Stora–Tyutin fermionic symmetry of the quantized action and, finally, to the resulting Zinn-Justin equation, which makes it possible to solve the renormalization and unitarity problems in their full generality. For an elementary introduction to the discussion of quantum non-Abelian gauge field theories in the spirit of the article, see, for example, L. D. Faddeev, “Faddeev–Popov ghosts,” Scholarpedia 4 (4), 7389 (2009); A. A. Slavnov, “Slavnov–Taylor identities,” Scholarpedia 3 (10), 7119 (2008); C. M. Becchi and C. Imbimbo, “Becchi–Rouet–Stora–Tyutin symmetry,” Scholarpedia 3 (10), 7135 (2008); J. Zinn-Justin, “Zinn-Justin equation,” Scholarpedia 4 (1), 7120 (2009).
@article{TRSPY_2020_309_a22,
     author = {Jean Zinn-Justin},
     title = {From {Slavnov--Taylor} {Identities} to the {Renormalization} of {Gauge} {Theories}},
     journal = {Informatics and Automation},
     pages = {338--345},
     publisher = {mathdoc},
     volume = {309},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a22/}
}
TY  - JOUR
AU  - Jean Zinn-Justin
TI  - From Slavnov--Taylor Identities to the Renormalization of Gauge Theories
JO  - Informatics and Automation
PY  - 2020
SP  - 338
EP  - 345
VL  - 309
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a22/
LA  - ru
ID  - TRSPY_2020_309_a22
ER  - 
%0 Journal Article
%A Jean Zinn-Justin
%T From Slavnov--Taylor Identities to the Renormalization of Gauge Theories
%J Informatics and Automation
%D 2020
%P 338-345
%V 309
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a22/
%G ru
%F TRSPY_2020_309_a22
Jean Zinn-Justin. From Slavnov--Taylor Identities to the Renormalization of Gauge Theories. Informatics and Automation, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 338-345. http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a22/

[1] Barnich G., Brandt F., Henneaux M., “Local BRST cohomology in the antifield formalism. I: General theorems”, Commun. Math. Phys., 174:1 (1995), 57–91 | MR | Zbl

[2] Barnich G., Brandt F., Henneaux M., “Local BRST cohomology in the antifield formalism. II: Application to Yang–Mills theory”, Commun. Math. Phys., 174:1 (1995), 93–116 | MR | Zbl

[3] Barnich G., Henneaux M., “Renormalization of gauge invariant operators and anomalies in Yang–Mills theory”, Phys. Rev. Lett., 72:11 (1994), 1588–1591 | MR | Zbl

[4] Becchi C., Rouet A., Stora R., “Renormalization of the abelian Higgs–Kibble model”, Commun. Math. Phys., 42:2 (1975), 127–162 | MR

[5] Becchi C., Rouet A., Stora R., “Renormalization of gauge theories”, Ann. Phys., 98:2 (1976), 287–321 | MR

[6] F. A. Berezin, The Method of Second Quantization, Nauka, Moscow, 1965 | MR | Zbl | Zbl

[7] Academic, New York, 1966 | MR | Zbl | Zbl

[8] Faddeev L.D., Popov V.N., “Feynman diagrams for the Yang–Mills field”, Phys. Lett. B, 25:1 (1967), 29–30

[9] Kluberg-Stern H., Zuber J.B., “Ward identities and some clues to the renormalization of gauge-invariant operators”, Phys. Rev. D, 12:2 (1975), 467–481

[10] Lee B.W., Zinn-Justin J., “Spontaneously broken gauge symmetries. I: Preliminaries”, Phys. Rev. D, 5:12 (1972), 3121–3137

[11] Lee B.W., Zinn-Justin J., “Spontaneously broken gauge symmetries. II: Perturbation theory and renormalization”, Phys. Rev. D, 5:12 (1972), 3137–3155

[12] Lee B.W., Zinn-Justin J., “Spontaneously broken gauge symmetries. III: Equivalence”, Phys. Rev. D, 5:12 (1972), 3155—3160

[13] Lee B.W., Zinn-Justin J., “Spontaneously broken gauge symmetries. IV: General gauge formulation”, Phys. Rev. D, 7:4 (1973), 1049–1056

[14] Popov V.N., Faddeev L.D., Teoriya vozmuschenii dlya kalibrovochno-invariantnykh polei, Preprint ITF-67-36, ITF AN USSR, Kiev, 1967; Popov V.N., Faddeev L.D., Perturbation theory for gauge-invariant fields, Preprint NAL-THY-57, Natl. Accelerator Lab., Batavia, IL, 1972; 50 Years of Yang–Mills Theory, ed. by G. 't Hooft, World Scientific, Singapore, 2005, 40–60 ; V. N. Popov and L. D. Faddeev, Perturbation theory for gauge-invariant fields, Preprint ITP 67-36, Inst. Theor. Phys. Acad. Sci. Ukr. SSR, Kiev, 1967; Preprint NAL-THY-57, Natl. Accelerator Lab., Batavia, IL, 1972; 50 Years of Yang–Mills Theory, ed. by G. 't Hooft, World Scientific, Singapore, 2005, 40–60 | MR

[15] Selected papers on gauge theory of weak and electromagnetic interactions, ed. by C.H. Lai, World Scientific, Singapore, 1981 | MR

[16] A. A. Slavnov, “Ward identities in gauge theories”, Theor. Math. Phys., 10:2 (1972), 99–104

[17] A. A. Slavnov, “Invariant regularization of gauge theories”, Theor. Math. Phys., 13:2 (1972), 1064–1066

[18] A. A. Slavnov and L. D. Faddeev, Introduction to Quantum Theory of Gauge Fields, Nauka, Moscow, 1988 | MR | MR | Zbl | Zbl

[19] L. D. Faddeev and A. A. Slavnov, Gauge Fields: Introduction to Quantum Theory, Front. Phys., 83, Addison-Wesley, Redwood City, CA, 1991 | MR | MR | Zbl | Zbl

[20] Taylor J.C., “Ward identities and charge renormalization of the Yang–Mills field”, Nucl. Phys. B, 33:2 (1971), 436–444 | MR

[21] Tyutin I.V., Gauge invariance in field theory and statistical physics in operator formalism, E-print, 2008, arXiv: 0812.0580

[22] Zinn-Justin J., “Renormalization of gauge theories”, Trends in elementary particle theory, Lect. Notes Phys., 37, ed. by H. Rollnik, K. Dietz, Springer, Berlin, 1975, 1–39

[23] Zinn-Justin J., “Renormalization problems in gauge theories”, Functional and probabilistic methods in quantum field theory, Proc. 12th Winter School of Theoretical Physics in Karpacz (1975), v. 1, Acta Univ. Wratislav., 368, Wydawn. Uniw. Wrocław., Wrocław, 1976, 433–453

[24] Zinn-Justin J., “Renormalization and stochastic quantization”, Nucl. Phys. B, 275:1 (1986), 135–159 | MR

[25] Zinn-Justin J., Quantum field theory and critical phenomena, Ch. 16, Oxford Univ. Press, Oxford, 1989 ; Int. Ser. Monogr. Phys., 113, 4th ed., Oxford Univ. Press, Oxford, 2002 | MR

[26] Zinn-Justin J., “Renormalization of gauge theories and master equation”, Mod. Phys. Lett. A, 14:19 (1999), 1227–1235 | MR

[27] J. Zinn-Justin, “From Slavnov–Taylor identities to the ZJ equation”, Proc. Steklov Inst. Math., 272 (2011), 288–292 | MR | Zbl

[28] Zinn-Justin J., Guida R., “Gauge invariance”, Scholarpedia, 3:12 (2008), 8287