Matrix Kadomtsev--Petviashvili Hierarchy and Spin Generalization of Trigonometric Calogero--Moser Hierarchy
Informatics and Automation, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 241-256.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider solutions of the matrix Kadomtsev–Petviashvili (KP) hierarchy that are trigonometric functions of the first hierarchical time $t_1=x$ and establish the correspondence with the spin generalization of the trigonometric Calogero–Moser system at the level of hierarchies. Namely, the evolution of poles $x_i$ and matrix residues at the poles $a_i^\alpha b_i^\beta $ of the solutions with respect to the $k$th hierarchical time of the matrix KP hierarchy is shown to be given by the Hamiltonian flow with the Hamiltonian which is a linear combination of the first $k$ higher Hamiltonians of the spin trigonometric Calogero–Moser system with coordinates $x_i$ and with spin degrees of freedom $a_i^\alpha $ and $b_i^\beta $. By considering the evolution of poles according to the discrete time matrix KP hierarchy, we also introduce the integrable discrete time version of the trigonometric spin Calogero–Moser system.
@article{TRSPY_2020_309_a16,
     author = {V. V. Prokofev and A. V. Zabrodin},
     title = {Matrix {Kadomtsev--Petviashvili} {Hierarchy} and {Spin} {Generalization} of {Trigonometric} {Calogero--Moser} {Hierarchy}},
     journal = {Informatics and Automation},
     pages = {241--256},
     publisher = {mathdoc},
     volume = {309},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a16/}
}
TY  - JOUR
AU  - V. V. Prokofev
AU  - A. V. Zabrodin
TI  - Matrix Kadomtsev--Petviashvili Hierarchy and Spin Generalization of Trigonometric Calogero--Moser Hierarchy
JO  - Informatics and Automation
PY  - 2020
SP  - 241
EP  - 256
VL  - 309
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a16/
LA  - ru
ID  - TRSPY_2020_309_a16
ER  - 
%0 Journal Article
%A V. V. Prokofev
%A A. V. Zabrodin
%T Matrix Kadomtsev--Petviashvili Hierarchy and Spin Generalization of Trigonometric Calogero--Moser Hierarchy
%J Informatics and Automation
%D 2020
%P 241-256
%V 309
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a16/
%G ru
%F TRSPY_2020_309_a16
V. V. Prokofev; A. V. Zabrodin. Matrix Kadomtsev--Petviashvili Hierarchy and Spin Generalization of Trigonometric Calogero--Moser Hierarchy. Informatics and Automation, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 241-256. http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a16/

[1] Airault H., McKean H.P., Moser J., “Rational and elliptic solutions of the Korteweg–de Vries equation and a related many-body problem”, Commun. Pure Appl. Math., 30:1 (1977), 95–148 | MR | Zbl

[2] Calogero F., “Solution of the one-dimensional $N$-body problems with quadratic and/or inversely quadratic pair potentials”, J. Math. Phys., 12:3 (1971), 419–436 | MR

[3] Calogero F., “Exactly solvable one-dimensional many-body problems”, Lett. Nuovo Cimento, 13:11 (1975), 411–416 | MR

[4] Choodnovsky D.V., Choodnovsky G.V., “Pole expansions of nonlinear partial differential equations”, Nuovo Cimento B, 40:2 (1977), 339–350 | MR

[5] Date E., Jimbo M., Kashiwara M., Miwa T., “Operator approach to the Kadomtsev–Petviashvili equation—Transformation groups for soliton equations. III”, J. Phys. Soc. Japan, 50:11 (1981), 3806–3812 | MR | Zbl

[6] Date E., Jinbo M., Miwa T., “Method for generating discrete soliton equations. I”, J. Phys. Soc. Japan, 51:12 (1982), 4116–4124 | MR

[7] Date E., Jinbo M., Miwa T., “Method for generating discrete soliton equations. II”, J. Phys. Soc. Japan, 51:12 (1982), 4125–4131 | MR

[8] Gibbons J., Hermsen T., “A generalisation of the Calogero–Moser system”, Physica D, 11:3 (1984), 337–348 | MR | Zbl

[9] Haine L., “KP trigonometric solitons and an adelic flag manifold”, SIGMA. Symmetry Integrability Geom. Methods Appl., 3 (2007), 015 | MR | Zbl

[10] Kac V., van de Leur J., “The $n$-component KP hierarchy and representation theory”, Important developments in soliton theory, ed. by A.S. Fokas, V.E. Zakharov, Springer, Berlin, 1993, 302–343 | MR | Zbl

[11] I. M. Krichever, “Rational solutions of the Kadomtsev–Petviashvili equation and integrable systems of $N$ particles on a line”, Funct. Anal. Appl., 12:1 (1978), 59–61 | MR | Zbl | Zbl

[12] I. M. Krichever, “Elliptic solutions of the Kadomtsev–Petviashvili equation and integrable systems of particles”, Funct. Anal. Appl., 14:4 (1980), 282–290 | MR | Zbl

[13] Krichever I., Babelon O., Billey E., Talon M., “Spin generalization of the Calogero–Moser system and the matrix KP equation”, Topics in topology and mathematical physics, AMS Transl. Ser. 2, 170, Amer. Math. Soc., Providence, RI, 1995, 83–119 | MR | Zbl

[14] Krichever I., Wiegmann P., Zabrodin A., “Elliptic solutions to difference non-linear equations and related many-body problems”, Commun. Math. Phys., 193:2 (1998), 373–396 | MR | Zbl

[15] Moser J., “Three integrable Hamiltonian systems connected with isospectral deformations”, Adv. Math., 16 (1975), 197–220 | MR | Zbl

[16] Nijhoff F.W., Pang G.-D., “A time-discretized version of the Calogero–Moser model”, Phys. Lett. A, 191:1–2 (1994), 101–107 | MR | Zbl

[17] Nijhoff F.W., Ragnisco O., Kuznetsov V.B., “Integrable time-discretization of the Ruijsenaars–Schneider model”, Commun. Math. Phys., 176:3 (1996), 681–700 | MR | Zbl

[18] Olshanetsky M.A., Perelomov A.M., “Classical integrable finite-dimensional systems related to Lie algebras”, Phys. Rep., 71:5 (1981), 313–400 | MR

[19] Pashkov V., Zabrodin A., “Spin generalization of the Calogero–Moser hierarchy and the matrix KP hierarchy”, J. Phys. A: Math. Theor., 51:21 (2018), 215201 | MR | Zbl

[20] Ragnisco O., Suris Yu.B., “Integrable discretizations of the spin Ruijsenaars-Schneider models”, J. Math. Phys., 38:9 (1997), 4680–4691 | MR | Zbl

[21] Shiota T., “Calogero–Moser hierarchy and KP hierarchy”, J. Math. Phys., 35:11 (1994), 5844–5849 | MR | Zbl

[22] Suris Yu.B., The problem of integrable discretization: Hamiltonian approach, Prog. Math., 219, Birkhäuser, Basel, 2003 | MR | Zbl

[23] Takasaki K., Takebe T., “Universal Whitham hierarchy, dispersionless Hirota equations and multicomponent KP hierarchy”, Physica D, 235:1–2 (2007), 109–125 | MR | Zbl

[24] Teo L.-P., “The multicomponent KP hierarchy: Differential Fay identities and Lax equations”, J. Phys. A: Math. Theor., 44:22 (2011), 225201 | MR | Zbl

[25] Zabrodin A., “Time discretization of the spin Calogero–Moser model and the semi-discrete matrix KP hierarchy”, J. Math. Phys., 60:3 (2019), 033502 | MR | Zbl

[26] Zabrodin A., “KP hierarchy and trigonometric Calogero–Moser hierarchy”, J. Math. Phys., 61:4 (2020), 043502 ; arXiv: 1906.09846 | MR | Zbl