Scalar Equilibrium Problem and the Limit Distribution of Zeros of Hermite--Pad\'e Polynomials of Type II
Informatics and Automation, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 174-197.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the scalar equilibrium problem posed on the two-sheeted Riemann surface, we prove the existence of a limit distribution of the zeros of Hermite–Padé polynomials of type II for a pair of functions forming a Nikishin system. We discuss the relation of the results obtained here to some results of H. Stahl (1988) and present results of numerical experiments. The results of the present paper and those obtained in earlier papers of the second author are shown to be in good accordance with both H. Stahl's results and results of numerical experiments.
Keywords: Nikishin system, Hermite–Padé polynomials, equilibrium problem, potential theory, Riemann surfaces.
@article{TRSPY_2020_309_a11,
     author = {N. R. Ikonomov and S. P. Suetin},
     title = {Scalar {Equilibrium} {Problem} and the {Limit} {Distribution} of {Zeros} of {Hermite--Pad\'e} {Polynomials} of {Type} {II}},
     journal = {Informatics and Automation},
     pages = {174--197},
     publisher = {mathdoc},
     volume = {309},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a11/}
}
TY  - JOUR
AU  - N. R. Ikonomov
AU  - S. P. Suetin
TI  - Scalar Equilibrium Problem and the Limit Distribution of Zeros of Hermite--Pad\'e Polynomials of Type II
JO  - Informatics and Automation
PY  - 2020
SP  - 174
EP  - 197
VL  - 309
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a11/
LA  - ru
ID  - TRSPY_2020_309_a11
ER  - 
%0 Journal Article
%A N. R. Ikonomov
%A S. P. Suetin
%T Scalar Equilibrium Problem and the Limit Distribution of Zeros of Hermite--Pad\'e Polynomials of Type II
%J Informatics and Automation
%D 2020
%P 174-197
%V 309
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a11/
%G ru
%F TRSPY_2020_309_a11
N. R. Ikonomov; S. P. Suetin. Scalar Equilibrium Problem and the Limit Distribution of Zeros of Hermite--Pad\'e Polynomials of Type II. Informatics and Automation, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 174-197. http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a11/

[1] A. I. Aptekarev, A. I. Bogolyubskii, and M. L. Yattselev, “Convergence of ray sequences of Frobenius–Padé approximants”, Sb. Math., 208:3 (2017), 313–334 | MR | Zbl

[2] A. I. Aptekarev and V. G. Lysov, “Systems of Markov functions generated by graphs and the asymptotics of their Hermite–Padé approximants”, Sb. Math., 201:2 (2010), 183–234 | MR | Zbl

[3] Baker G.A., Jr., Graves-Morris P., Padé approximants, Encycl. Math. Appl., 59, 2nd ed., Cambridge Univ. Press, Cambridge, 1996 | MR

[4] D. Barrios Rolanía, J. S. Geronimo, and G. López Lagomasino, “High-order recurrence relations, Hermite–Padé approximation and Nikishin systems”, Sb. Math., 209:3 (2018), 385–420 | MR | Zbl

[5] E. M. Chirka, “Potentials on a compact Riemann surface”, Proc. Steklov Inst. Math., 301 (2018), 272–303 | MR | Zbl

[6] E. M. Chirka, “Equilibrium measures on a compact Riemann surface”, Proc. Steklov Inst. Math., 306 (2019), 296–334 | MR | Zbl

[7] A. A. Gonchar, “Rational approximations of analytic functions”, Proc. Steklov Inst. Math., 272:Suppl. 2 (2011), S44–S57 | MR | Zbl | Zbl

[8] A. A. Gonchar and E. A. Rakhmanov, “On convergence of simultaneous Padé approximants for systems of functions of Markov type”, Proc. Steklov Inst. Math., 157 (1983), 31–50 | MR | Zbl | Zbl

[9] A. A. Gonchar and E. A. Rakhmanov, “Equilibrium distributions and degree of rational approximation of analytic functions”, Math. USSR, Sb., 62:2 (1989), 305–348 | MR | Zbl | Zbl

[10] A. A. Gonchar, E. A. Rakhmanov, and V. N. Sorokin, “Hermite–Padé approximants for systems of Markov-type functions”, Sb. Math., 188:5 (1997), 671–696 | MR | Zbl

[11] A. A. Gonchar, E. A. Rakhmanov, and S. P. Suetin, “Padé–Chebyshev approximants of multivalued analytic functions, variation of equilibrium energy, and the $S$-property of stationary compact sets”, Russ. Math. Surv., 66:6 (2011), 1015–1048 | MR | Zbl

[12] A. A. Gonchar and S. P. Suetin, “On Padé approximants of Markov-type meromorphic functions”, Proc. Steklov Inst. Math., 272:Suppl. 2 (2011), S58–S95 | MR | Zbl

[13] A. V. Komlov, R. V. Palvelev, S. P. Suetin, and E. M. Chirka, “Hermite–Padé approximants for meromorphic functions on a compact Riemann surface”, Russ. Math. Surv., 72:4 (2017), 671–706 | MR | Zbl

[14] López-García A., López Lagomasino G., “Nikishin systems on star-like sets: Ratio asymptotics of the associated multiple orthogonal polynomials”, J. Approx. Theory, 225 (2018), 1–40 | MR | Zbl

[15] López-García A., López Lagomasino G., “Nikishin systems on star-like sets: Ratio asymptotics of the associated multiple orthogonal polynomials. II”, J. Approx. Theory, 250 (2020), 105320 ; arXiv: 1907.03002 | MR | Zbl

[16] A. López-García and E. Mina-Diaz, “Nikishin systems on star-like sets: Algebraic properties and weak asymptotics of the associated multiple orthogonal polynomials”, Sb. Math., 209:7 (2018), 1051–1088 | MR | Zbl

[17] López Lagomasino G., Medina Peralta S., Szmigielski J., “Mixed type Hermite–Padé approximation inspired by the Degasperis–Procesi equation”, Adv. Math., 349 (2019), 813–838 | MR | Zbl

[18] G. López Lagomasino and W. Van Assche, “Riemann–Hilbert analysis for a Nikishin system”, Sb. Math., 209:7 (2018), 1019–1050 | MR | Zbl

[19] Mano T., Tsuda T., “Hermite–Padé approximation, isomonodromic deformation and hypergeometric integral”, Math. Z., 285:1–2 (2017), 397–431 | MR | Zbl

[20] Martínez-Finkelshtein A., Rakhmanov E.A., Suetin S.P., “Asymptotics of type I Hermite–Padé polynomials for semiclassical functions”, Modern trends in constructive function theory, Contemp. Math., 661, Amer. Math. Soc., Providence, RI, 2016, 199–228 | MR | Zbl

[21] E. M. Nikishin, “The asymptotic behavior of linear forms for joint Padé approximations”, Sov. Math., 30:2 (1986), 43–52 | Zbl

[22] E. M. Nikishin and V. N. Sorokin, Rational Approximations and Orthogonality, Nauka, Moscow, 1988 | MR | Zbl | Zbl

[23] Am. Math. Soc., Providence, RI, 1991 | MR | Zbl | Zbl

[24] Nuttall J., “Asymptotics of diagonal Hermite–Padé polynomials”, J. Approx. Theory, 42:4 (1984), 299–386 | MR | Zbl

[25] E. A. Rakhmanov, “Zero distribution for Angelesco Hermite–Padé polynomials”, Russ. Math. Surv., 73:3 (2018), 457–518 | MR | Zbl

[26] E. A. Rakhmanov and S. P. Suetin, “The distribution of the zeros of the Hermite–Padé polynomials for a pair of functions forming a Nikishin system”, Sb. Math., 204:9 (2013), 1347–1390 | MR | Zbl

[27] Stahl H., “Three different approaches to a proof of convergence for Padé approximants”, Rational approximation and applications in mathematics and physics, Proc. Conf. (Łańcut, 1985), Lect. Notes Math., 1237, Springer, Berlin, 1987, 79–124 | MR

[28] Stahl H., “Asymptotics of Hermite–Padé polynomials and related convergence results: A summary of results”, Nonlinear numerical methods and rational approximation, Math. Appl., 43, D. Reidel, Dordrecht, 1988, 23–53 | MR | Zbl

[29] S. P. Suetin, “On a new approach to the problem of distribution of zeros of Hermite–Padé polynomials for a Nikishin system”, Proc. Steklov Inst. Math., 301 (2018), 245–261 | MR | Zbl

[30] S. P. Suetin, “Distribution of the zeros of Hermite–Padé polynomials for a complex Nikishin system”, Russ. Math. Surv., 73:2 (2018), 363–365 | MR | Zbl

[31] Suetin S.P., Hermite–Padé polynomials and analytic continuation: New approach and some results, E-print, 2018, arXiv: 1806.08735

[32] S. P. Suetin, “On an example of the Nikishin system”, Math. Notes, 104:6 (2018), 905–914 | MR | Zbl

[33] S. P. Suetin, “Existence of a three-sheeted Nuttall surface for a certain class of infinite-valued analytic functions”, Russ. Math. Surv., 74:2 (2019), 363–365 | MR | Zbl

[34] S. P. Suetin, “Equivalence of a scalar and a vector equilibrium problem for a pair of functions forming a Nikishin system”, Math. Notes, 106:6 (2019), 971–980 | MR | Zbl

[35] Trias A., “HELM: The holomorphic embedding load-flow method: Foundations and implementations”, Found. Trends Electr. Energy Syst., 3:3–4 (2018), 140–370

[36] Van Assche W., “Pade and Hermite–Padé approximation and orthogonality”, Surv. Approx. Theory, 2 (2006), 61–91 | MR | Zbl