Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2020_309_a11, author = {N. R. Ikonomov and S. P. Suetin}, title = {Scalar {Equilibrium} {Problem} and the {Limit} {Distribution} of {Zeros} of {Hermite--Pad\'e} {Polynomials} of {Type} {II}}, journal = {Informatics and Automation}, pages = {174--197}, publisher = {mathdoc}, volume = {309}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a11/} }
TY - JOUR AU - N. R. Ikonomov AU - S. P. Suetin TI - Scalar Equilibrium Problem and the Limit Distribution of Zeros of Hermite--Pad\'e Polynomials of Type II JO - Informatics and Automation PY - 2020 SP - 174 EP - 197 VL - 309 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a11/ LA - ru ID - TRSPY_2020_309_a11 ER -
%0 Journal Article %A N. R. Ikonomov %A S. P. Suetin %T Scalar Equilibrium Problem and the Limit Distribution of Zeros of Hermite--Pad\'e Polynomials of Type II %J Informatics and Automation %D 2020 %P 174-197 %V 309 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a11/ %G ru %F TRSPY_2020_309_a11
N. R. Ikonomov; S. P. Suetin. Scalar Equilibrium Problem and the Limit Distribution of Zeros of Hermite--Pad\'e Polynomials of Type II. Informatics and Automation, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 174-197. http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a11/
[1] A. I. Aptekarev, A. I. Bogolyubskii, and M. L. Yattselev, “Convergence of ray sequences of Frobenius–Padé approximants”, Sb. Math., 208:3 (2017), 313–334 | MR | Zbl
[2] A. I. Aptekarev and V. G. Lysov, “Systems of Markov functions generated by graphs and the asymptotics of their Hermite–Padé approximants”, Sb. Math., 201:2 (2010), 183–234 | MR | Zbl
[3] Baker G.A., Jr., Graves-Morris P., Padé approximants, Encycl. Math. Appl., 59, 2nd ed., Cambridge Univ. Press, Cambridge, 1996 | MR
[4] D. Barrios Rolanía, J. S. Geronimo, and G. López Lagomasino, “High-order recurrence relations, Hermite–Padé approximation and Nikishin systems”, Sb. Math., 209:3 (2018), 385–420 | MR | Zbl
[5] E. M. Chirka, “Potentials on a compact Riemann surface”, Proc. Steklov Inst. Math., 301 (2018), 272–303 | MR | Zbl
[6] E. M. Chirka, “Equilibrium measures on a compact Riemann surface”, Proc. Steklov Inst. Math., 306 (2019), 296–334 | MR | Zbl
[7] A. A. Gonchar, “Rational approximations of analytic functions”, Proc. Steklov Inst. Math., 272:Suppl. 2 (2011), S44–S57 | MR | Zbl | Zbl
[8] A. A. Gonchar and E. A. Rakhmanov, “On convergence of simultaneous Padé approximants for systems of functions of Markov type”, Proc. Steklov Inst. Math., 157 (1983), 31–50 | MR | Zbl | Zbl
[9] A. A. Gonchar and E. A. Rakhmanov, “Equilibrium distributions and degree of rational approximation of analytic functions”, Math. USSR, Sb., 62:2 (1989), 305–348 | MR | Zbl | Zbl
[10] A. A. Gonchar, E. A. Rakhmanov, and V. N. Sorokin, “Hermite–Padé approximants for systems of Markov-type functions”, Sb. Math., 188:5 (1997), 671–696 | MR | Zbl
[11] A. A. Gonchar, E. A. Rakhmanov, and S. P. Suetin, “Padé–Chebyshev approximants of multivalued analytic functions, variation of equilibrium energy, and the $S$-property of stationary compact sets”, Russ. Math. Surv., 66:6 (2011), 1015–1048 | MR | Zbl
[12] A. A. Gonchar and S. P. Suetin, “On Padé approximants of Markov-type meromorphic functions”, Proc. Steklov Inst. Math., 272:Suppl. 2 (2011), S58–S95 | MR | Zbl
[13] A. V. Komlov, R. V. Palvelev, S. P. Suetin, and E. M. Chirka, “Hermite–Padé approximants for meromorphic functions on a compact Riemann surface”, Russ. Math. Surv., 72:4 (2017), 671–706 | MR | Zbl
[14] López-García A., López Lagomasino G., “Nikishin systems on star-like sets: Ratio asymptotics of the associated multiple orthogonal polynomials”, J. Approx. Theory, 225 (2018), 1–40 | MR | Zbl
[15] López-García A., López Lagomasino G., “Nikishin systems on star-like sets: Ratio asymptotics of the associated multiple orthogonal polynomials. II”, J. Approx. Theory, 250 (2020), 105320 ; arXiv: 1907.03002 | MR | Zbl
[16] A. López-García and E. Mina-Diaz, “Nikishin systems on star-like sets: Algebraic properties and weak asymptotics of the associated multiple orthogonal polynomials”, Sb. Math., 209:7 (2018), 1051–1088 | MR | Zbl
[17] López Lagomasino G., Medina Peralta S., Szmigielski J., “Mixed type Hermite–Padé approximation inspired by the Degasperis–Procesi equation”, Adv. Math., 349 (2019), 813–838 | MR | Zbl
[18] G. López Lagomasino and W. Van Assche, “Riemann–Hilbert analysis for a Nikishin system”, Sb. Math., 209:7 (2018), 1019–1050 | MR | Zbl
[19] Mano T., Tsuda T., “Hermite–Padé approximation, isomonodromic deformation and hypergeometric integral”, Math. Z., 285:1–2 (2017), 397–431 | MR | Zbl
[20] Martínez-Finkelshtein A., Rakhmanov E.A., Suetin S.P., “Asymptotics of type I Hermite–Padé polynomials for semiclassical functions”, Modern trends in constructive function theory, Contemp. Math., 661, Amer. Math. Soc., Providence, RI, 2016, 199–228 | MR | Zbl
[21] E. M. Nikishin, “The asymptotic behavior of linear forms for joint Padé approximations”, Sov. Math., 30:2 (1986), 43–52 | Zbl
[22] E. M. Nikishin and V. N. Sorokin, Rational Approximations and Orthogonality, Nauka, Moscow, 1988 | MR | Zbl | Zbl
[23] Am. Math. Soc., Providence, RI, 1991 | MR | Zbl | Zbl
[24] Nuttall J., “Asymptotics of diagonal Hermite–Padé polynomials”, J. Approx. Theory, 42:4 (1984), 299–386 | MR | Zbl
[25] E. A. Rakhmanov, “Zero distribution for Angelesco Hermite–Padé polynomials”, Russ. Math. Surv., 73:3 (2018), 457–518 | MR | Zbl
[26] E. A. Rakhmanov and S. P. Suetin, “The distribution of the zeros of the Hermite–Padé polynomials for a pair of functions forming a Nikishin system”, Sb. Math., 204:9 (2013), 1347–1390 | MR | Zbl
[27] Stahl H., “Three different approaches to a proof of convergence for Padé approximants”, Rational approximation and applications in mathematics and physics, Proc. Conf. (Łańcut, 1985), Lect. Notes Math., 1237, Springer, Berlin, 1987, 79–124 | MR
[28] Stahl H., “Asymptotics of Hermite–Padé polynomials and related convergence results: A summary of results”, Nonlinear numerical methods and rational approximation, Math. Appl., 43, D. Reidel, Dordrecht, 1988, 23–53 | MR | Zbl
[29] S. P. Suetin, “On a new approach to the problem of distribution of zeros of Hermite–Padé polynomials for a Nikishin system”, Proc. Steklov Inst. Math., 301 (2018), 245–261 | MR | Zbl
[30] S. P. Suetin, “Distribution of the zeros of Hermite–Padé polynomials for a complex Nikishin system”, Russ. Math. Surv., 73:2 (2018), 363–365 | MR | Zbl
[31] Suetin S.P., Hermite–Padé polynomials and analytic continuation: New approach and some results, E-print, 2018, arXiv: 1806.08735
[32] S. P. Suetin, “On an example of the Nikishin system”, Math. Notes, 104:6 (2018), 905–914 | MR | Zbl
[33] S. P. Suetin, “Existence of a three-sheeted Nuttall surface for a certain class of infinite-valued analytic functions”, Russ. Math. Surv., 74:2 (2019), 363–365 | MR | Zbl
[34] S. P. Suetin, “Equivalence of a scalar and a vector equilibrium problem for a pair of functions forming a Nikishin system”, Math. Notes, 106:6 (2019), 971–980 | MR | Zbl
[35] Trias A., “HELM: The holomorphic embedding load-flow method: Foundations and implementations”, Found. Trends Electr. Energy Syst., 3:3–4 (2018), 140–370
[36] Van Assche W., “Pade and Hermite–Padé approximation and orthogonality”, Surv. Approx. Theory, 2 (2006), 61–91 | MR | Zbl