Magnetic Pole as Produced by a Point-like Electric Charge Embedded in Constant-Field Background
Informatics and Automation, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 7-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a linear magnetic response to a point electric charge embedded in the background of parallel constant electric and magnetic fields in the framework of nonlinear electrodynamics. We find two types of responses. One is given by a vector potential free of any string singularity. The corresponding magnetic field may be thought of as two magnetic poles of opposite polarity coexisting at one point. The other response is given by a vector potential singular on a half-axis directed along the background fields. Its magnetic field is a magnetic monopole plus a field confined to an infinitely thin solenoid, whose role is the same as that of the Dirac string. The value of the magnetic charge is determined by the electric charge and the background fields and is expressed in terms of derivatives of the nonlinear local Lagrangian. Once the potential is singular, the nonlinear Maxwell equations written for potentials and field intensities are not equivalent. We argue why the preference should be given to potentials.
@article{TRSPY_2020_309_a0,
     author = {T. C. Adorno and D. M. Gitman and A. E. Shabad},
     title = {Magnetic {Pole} as {Produced} by a {Point-like} {Electric} {Charge} {Embedded} in {Constant-Field} {Background}},
     journal = {Informatics and Automation},
     pages = {7--17},
     publisher = {mathdoc},
     volume = {309},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a0/}
}
TY  - JOUR
AU  - T. C. Adorno
AU  - D. M. Gitman
AU  - A. E. Shabad
TI  - Magnetic Pole as Produced by a Point-like Electric Charge Embedded in Constant-Field Background
JO  - Informatics and Automation
PY  - 2020
SP  - 7
EP  - 17
VL  - 309
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a0/
LA  - ru
ID  - TRSPY_2020_309_a0
ER  - 
%0 Journal Article
%A T. C. Adorno
%A D. M. Gitman
%A A. E. Shabad
%T Magnetic Pole as Produced by a Point-like Electric Charge Embedded in Constant-Field Background
%J Informatics and Automation
%D 2020
%P 7-17
%V 309
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a0/
%G ru
%F TRSPY_2020_309_a0
T. C. Adorno; D. M. Gitman; A. E. Shabad. Magnetic Pole as Produced by a Point-like Electric Charge Embedded in Constant-Field Background. Informatics and Automation, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 7-17. http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a0/

[1] Aaboud M. et al. (ATLAS Collaboration)., “Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC”, Nature Phys., 13:9 (2017), 852–858 ; arXiv: 1702.01625

[2] Adler S.L., “Photon splitting and photon dispersion in a strong magnetic field”, Ann. Phys., 67:2 (1971), 599–647

[3] Adorno T.C., Gitman D.M., Shabad A.E., “Magnetic response to applied electrostatic field in external magnetic field”, Eur. Phys. J. C, 74:4 (2014), 2838

[4] Adorno T.C., Gitman D.M., Shabad A.E., “Electric charge is a magnetic dipole when placed in a background magnetic field”, Phys. Rev. D, 89:4 (2014), 047504

[5] Adorno T.C., Gitman D.M., Shabad A.E., “When electric charge becomes also magnetic”, Phys. Rev. D, 92:4 (2015), 041702(R)

[6] Adorno T.C., Gitman D.M., Shabad A.E., “Coulomb field in a constant electromagnetic background”, Phys. Rev. D, 93:12 (2016), 125031 | MR

[7] Adorno T.C., Gitman D.M., Shabad A.E., Magnetic response from constant backgrounds to Coulomb sources, E-print, 2019, arXiv: 1710.00138v2

[8] Aharonov Y., Bohm D., “Significance of electromagnetic potentials in the quantum theory”, Phys. Rev., 115:3 (1959), 485–491 | MR | Zbl

[9] I. A. Batalin and A. E. Shabad, “Green's function of a photon in a constant homogeneous electromagnetic field of general form”, Sov. Phys. JETP, 33:3 (1971), 483–486 | MR

[10] Batelaan H., Tonomura A., “The Aharonov–Bohm effects: Variations on a subtle theme”, Phys. Today, 62:9 (2009), 38–43

[11] Bialynicka-Birula Z., Bialynicki-Birula I., “Nonlinear effects in quantum electrodynamics. Photon propagation and photon splitting in an external field”, Phys. Rev. D, 2:10 (1970), 2341–2345

[12] Born M., Infeld L., “Foundations of the new field theory”, Proc. R. Soc. A, 144 (1934), 425–451

[13] Diachenko M., Novak O., Kholodov R., “Vacuum birefringence in a supercritical magnetic field”, Ukr. J. Phys., 64:3 (2019), 181–188

[14] Dirac P.A.M., “Quantised singularities in the electromagnetic field”, Proc. R. Soc. London A, 133 (1931), 60–72

[15] Dirac P.A.M., “The theory of magnetic poles”, Phys. Rev., 74:7 (1948), 817–830 | MR | Zbl

[16] Erber T., “High-energy electromagnetic conversion processes in intense magnetic fields”, Rev. Mod. Phys., 38:4 (1966), 626–659 | MR

[17] Fan X. et al., The OVAL experiment: A new experiment to measure vacuum magnetic birefringence using high repetition pulsed magnets, E-print, 2017, arXiv: 1705.00495

[18] Gies H., Karbstein F., Seegert N., “Photon merging and splitting in electromagnetic field inhomogeneities”, Phys. Rev. D, 93:8 (2016), 085034 | MR

[19] Gitman D.M., Shabad A.E., “Nonlinear (magnetic) correction to the field of a static charge in an external field”, Phys. Rev. D, 86:12 (2012), 125028

[20] Heisenberg W., Euler H., “Folgerungen aus der Diracschen Theorie des Positrons”, Z. Phys., 98 (1936), 714–732

[21] Heras R., “Dirac quantisation condition: A comprehensive review”, Contemp. Phys., 59:4 (2018), 331–355

[22] Kruglov S.I., “Magnetically charged black hole in framework of nonlinear electrodynamics model”, Int. J. Mod. Phys. A, 33:03 (2018), 1850023 | MR | Zbl

[23] Kruglov S.I., “Dyonic black holes with nonlinear logarithmic electrodynamics”, Gravit. Cosmol., 25:2 (2019), 190–195 | MR | Zbl

[24] Lai D., Salpeter E.E., “Motion and ionization equilibrium of hydrogen atoms in a superstrong magnetic field”, Phys. Rev. A, 52:4 (1995), 2611–2623

[25] Mignani R.P. et al., “Evidence for vacuum birefringence from the first optical-polarimetry measurement of the isolated neutron star RX J1856.5-3754”, Mon. Not. R. Astron. Soc., 465:1 (2017), 492–500

[26] V. I. Ritus, “The Lagrangian function of an intense electromagnetic field”, Problems of Intense-Field Quantum Electrodynamics, Tr. Fiz. Inst. Lebedeva, 168, ed. by V. L. Ginzburg, Nauka, Moscow, 1986, 5–51

[27] Issues in Intense-Field Quantum Electrodynamics, Proc. Lebedev Phys. Inst., 168, Nova Science Publ., New York, 1987, 1–62

[28] Shnir Y.M., Magnetic monopoles, Springer, Berlin, 2005 | MR | Zbl

[29] Slavnov A.A., Faddeev L.D., Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1978, 1988; A. A. Slavnov and L. D. Faddeev, Introduction to Quantum Theory of Gauge Fields, Nauka, Moscow, 1978, 1988 ; L. D. Faddeev and A. A. Slavnov, Gauge Fields: Introduction to Quantum Theory, Front. Phys., 50, Benjamin/Commings, London, 1980 ; Gauge Fields: An Introduction to Quantum Theory, 2nd ed., Westview Press, Boulder, CO, 1993 | MR | MR | Zbl

[30] Thompson C., Duncan R.C., “The soft gamma repeaters as very strongly magnetized neutron stars. I: Radiative mechanism for outbursts”, Mon. Not. R. Astron. Soc., 275:2 (1995), 255–300

[31] Valluri S.R., Mielniczuk J.W., Chishtie F., Lamm D., Auddy S., “Vacuum birefringence, the photon anomalous magnetic moment and the neutron star RX J1856.5-3754”, Mon. Not. R. Astron. Soc., 472:2 (2017), 2398–2402

[32] “The electrodynamics of the vacuum based on the quantum theory of the electron”, Early quantum electrodynamics: A sourcebook, ed. by A.I. Miller, Cambridge Univ. Press, Cambridge, 1994, 206–226 | MR

[33] Zavattini G. et al., “Intrinsic mirror noise in Fabry–Perot based polarimeters: The case for the measurement of vacuum magnetic birefringence”, Eur. Phys. J. C, 78:7 (2018), 585