Three Types of Attractors and Mixed Dynamics of Nonholonomic Models of Rigid Body Motion
Informatics and Automation, Differential equations and dynamical systems, Tome 308 (2020), pp. 135-151.

Voir la notice de l'article provenant de la source Math-Net.Ru

We survey recent results on the theory of dynamical chaos from the point of view of topological dynamics. We present the concept of three types of dynamics: conservative, dissipative, and mixed dynamics, and also show several simple examples of attractors and repellers of all three types. Their similarities and differences with other known types of attractors and repellers (maximal and Milnor ones) are discussed. We also present elements of the qualitative theory of mixed dynamics of reversible systems. As examples of such systems we consider three nonholonomic models of rigid body motion: the Suslov top, rubber disk, and Celtic stone. It is shown that they exhibit mixed dynamics of different nature; in particular, the mixed dynamics observed in the model of rubber disk is extremely difficult to distinguish from the conservative one.
@article{TRSPY_2020_308_a9,
     author = {S. V. Gonchenko and A. S. Gonchenko and A. O. Kazakov},
     title = {Three {Types} of {Attractors} and {Mixed} {Dynamics} of {Nonholonomic} {Models} of {Rigid} {Body} {Motion}},
     journal = {Informatics and Automation},
     pages = {135--151},
     publisher = {mathdoc},
     volume = {308},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a9/}
}
TY  - JOUR
AU  - S. V. Gonchenko
AU  - A. S. Gonchenko
AU  - A. O. Kazakov
TI  - Three Types of Attractors and Mixed Dynamics of Nonholonomic Models of Rigid Body Motion
JO  - Informatics and Automation
PY  - 2020
SP  - 135
EP  - 151
VL  - 308
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a9/
LA  - ru
ID  - TRSPY_2020_308_a9
ER  - 
%0 Journal Article
%A S. V. Gonchenko
%A A. S. Gonchenko
%A A. O. Kazakov
%T Three Types of Attractors and Mixed Dynamics of Nonholonomic Models of Rigid Body Motion
%J Informatics and Automation
%D 2020
%P 135-151
%V 308
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a9/
%G ru
%F TRSPY_2020_308_a9
S. V. Gonchenko; A. S. Gonchenko; A. O. Kazakov. Three Types of Attractors and Mixed Dynamics of Nonholonomic Models of Rigid Body Motion. Informatics and Automation, Differential equations and dynamical systems, Tome 308 (2020), pp. 135-151. http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a9/

[1] A. A. Afonin and V. V. Kozlov, “The fall problem for a disk moving on a horizontal plane”, Mech. Solids, 32:1 (1997), 4–9

[2] Afraimovich V.S., Shil'nikov L.P., “Strange attractors and quasiattractors”, Nonlinear dynamics and turbulence, ed. by G.I. Barenblatt, G. Iooss, D.D. Joseph, Pitman, Boston, 1983, 1–34 | MR

[3] Dynamical Systems I, Encycl. Math. Sci., 1, Springer, Berlin, 1988, 197–219 | MR

[4] Dynamical Systems V: Bifurcation Theory and Catastrophe Theory, Encycl. Math. Sci., 5, Springer, Berlin, 1994, 1–205

[5] I. S. Astapov, “On the stability of rotation of the Celtic stone”, Vestn. Mosk. Univ., Ser. 1: Mat., Mekh., 1980, no. 2, 97–100 | Zbl

[6] I. A. Bizyaev, A. V. Borisov, and A. O. Kazakov, “Dynamics of the Suslov problem in a gravitational field: Reversal and strange attractors”, Regul. Chaotic Dyn., 20:5 (2015), 605–626 | DOI | MR | MR | Zbl

[7] Bizyaev I., Mamaev I.S., “Dynamics of the nonholonomic Suslov problem under periodic control: unbounded speedup and strange attractors”, J. Phys. A: Math. Theor., 2020 | DOI

[8] A. V. Borisov, A. O. Kazakov, and S. P. Kuznetsov, “Nonlinear dynamics of the rattleback: A nonholonomic model”, Phys. Usp., 57 (2014), 453–460 | DOI | DOI

[9] Borisov A.V., Kazakov A.O., Sataev I.R., “The reversal and chaotic attractor in the nonholonomic model of Chaplygin's top”, Regul. Chaotic Dyn., 19:6 (2014), 718–733 | DOI | MR | Zbl

[10] A. V. Borisov and I. S. Mamaev, Rigid Body Dynamics, Regular and Chaotic Dynamics, Moscow, 2001 (in Russian) | MR

[11] A. V. Borisov and I. S. Mamaev, “Strange attractors in rattleback dynamics”, Phys. Usp., 46 (2003), 393–403 | DOI | DOI

[12] Conley C., Isolated invariant sets and the Morse index, Reg. Conf. Ser. Math., 38, Amer. Math. Soc., Providence, RI, 1978 | MR | Zbl

[13] Delshams A., Gonchenko M., Gonchenko S.V., Lázaro J.T., “Mixed dynamics of 2-dimensional reversible maps with a symmetric couple of quadratic homoclinic tangencies”, Discrete Contin. Dyn. Syst. A, 38:9 (2018), 4483–4507 | DOI | MR | Zbl

[14] Delshams A., Gonchenko S.V., Gonchenko V.S., Lázaro J.T., Sten'kin O., “Abundance of attracting, repelling and elliptic periodic orbits in two-dimensional reversible maps”, Nonlinearity, 26:1 (2013), 1–33 | DOI | MR | Zbl

[15] V. A. Dobrynskiĭand A. N. Sharkovskiĭ, “Typicalness of dynamical systems almost all paths of which are stable under permanently acting perturbations”, Sov. Math., Dokl., 14 (1973), 997–1000 | Zbl

[16] A. S. Gonchenko, S. V. Gonchenko, and A. O. Kazakov, “On some new aspects of Celtic stone chaotic dynamics”, Nelinein. Din., 8:3 (2012), 507–518

[17] Gonchenko A.S., Gonchenko S.V., Kazakov A.O., “Richness of chaotic dynamics in nonholonomic models of a Celtic stone”, Regul. Chaotic Dyn., 18:5 (2013), 521–538 | DOI | MR | Zbl

[18] A. S. Gonchenko, S. V. Gonchenko, A. O. Kazakov, and E. A. Samylina, “Chaotic dynamics and multistability in the nonholonomic model of a Celtic stone”, Radiophys. Quantum Electron., 61:10 (2019), 773–786 | DOI | MR

[19] Gonchenko A.S., Gonchenko S.V., Kazakov A.O., Turaev D.V., “On the phenomenon of mixed dynamics in Pikovsky–Topaj system of coupled rotators”, Physica D, 350 (2017), 45–57 | DOI | MR | Zbl

[20] A. S. Gonchenko and E. A. Samylina, “On the region of existence of a discrete Lorenz attractor in the nonholonomic model of a Celtic stone”, Radiophys. Quantum Electron., 62:5 (2019), 369–384 | DOI

[21] Gonchenko S.V., “Reversible mixed dynamics: A concept and examples”, Discontin. Nonlinearity Complex., 5:4 (2016), 365–374 | DOI | Zbl

[22] S. V. Gonchenko, M. S. Gonchenko, and I. O. Sinitsky, “On mixed dynamics of two-dimensional reversible diffeomorphisms with symmetric non-transversal heteroclinic cycles”, Izv. Math., 84:1 (2020), 23–51 | DOI | DOI | MR

[23] Gonchenko S.V., Kazakov A.O., Turaev D., Wild pseudohyperbolic attractors in a four-dimensional Lorenz system, E-print, 2018, arXiv: 1809.07250 [math.DS]

[24] S. V. Gonchenko, J. S. W. Lamb, I. Rios, and D. Turaev, “Attractors and repellers near generic elliptic points of reversible maps”, Dokl. Math., 89:1 (2014), 65–67 | DOI | MR | Zbl

[25] Gonchenko S.V., Shilnikov L.P., Stenkin O.V., “On Newhouse regions with infinitely many stable and unstable invariant tori”, Progress in nonlinear science: Proc. Int. Conf. (Nizhni Novgorod, 2001), v. 1, Mathematical problems of nonlinear dynamics, Nizhni Novgorod, 2002, 80–102 | MR

[26] Gonchenko S.V., Shil'nikov L.P., Turaev D.V., “Quasiattractors and homoclinic tangencies”, Comput. Math. Appl., 34:2–4 (1997), 195–227 | DOI | MR | Zbl

[27] Gonchenko S.V., Shilnikov L.P., Turaev D.V., “On dynamical properties of multidimensional diffeomorphisms from Newhouse regions. I”, Nonlinearity, 21:5 (2008), 923–972 | DOI | MR | Zbl

[28] S. V. Gonchenko and O. V. Stenkin, “On the mixed dynamics of systems from Newhouse regions with heteroclinic tangencies”, Proc. Final Sci. Conf. of Educ. Sci. Innov. Complex “Models, Methods and Software” (Nizhni Novgorod, 2007), Izd. Nizhegor. Gos. Univ., Nizhni Novgorod, 2007, 101–102 (in Russian)

[29] S. V. Gonchenko and D. V. Turaev, “On three types of dynamics and the notion of attractor”, Proc. Steklov Inst. Math., 297 (2017), 116–137 | DOI | DOI | MR | Zbl

[30] S. V. Gonchenko, D. V. Turaev, and L. P. Shil'nikov, “On the existence of Newhouse domains in a neighborhood of systems with a structurally unstable Poincaré homoclinic curve (the higher-dimensional case)”, Dokl. Math., 47:2 (1993), 268–273 | MR | Zbl

[31] S. V. Gonchenko, D. V. Turaev, and L. P. Shil'nikov, “On Newhouse domains of two-dimensional diffeomorphisms which are close to a diffeomorphism with a structurally unstable heteroclinic cycle”, Proc. Steklov Inst. Math., 216 (1997), 70–118 | MR | Zbl

[32] Hurley M., “Attractors: Persistence, and density of their basins”, Trans. Amer. Math. Soc., 269:1 (1982), 247–271 | DOI | MR | Zbl

[33] A. V. Karapetyan, “On permanent rotations of a heavy solid body on an absolutely rough horizontal plane”, J. Appl. Math. Mech., 45 (1982), 604–608 | DOI | Zbl

[34] Kazakov A.O., “Strange attractors and mixed dynamics in the problem of an unbalanced rubber ball rolling on a plane”, Regul. Chaotic Dyn., 18:5 (2013), 508–520 | DOI | MR | Zbl

[35] Kazakov A.O., “On the chaotic dynamics of a rubber ball with three internal rotors”, Nonlinear Dyn. Mobile Robot., 2:1 (2014), 73–97 | MR

[36] A. O. Kazakov, “On the appearance of mixed dynamics as a result of collision of strange attractors and repellers in reversible systems”, Radiophys. Quantum Electron., 61:8–9 (2019), 650–658 | DOI

[37] Kazakov A., “Merger of a Hénon-like attractor with a Hénon-like repeller in a model of vortex dynamics”, Chaos, 30:1 (2020), 011105 | DOI | MR | Zbl

[38] V. V. Kozlov, “On the integration theory of equations of nonholonomic mechanics”, Regul. Chaotic Dyn., 7:2 (2002), 161–176 | DOI | MR | MR | Zbl

[39] Kozlov V.V., “Several problems on dynamical systems and mechanics”, Nonlinearity, 21:9 (2008), T149–T155 | DOI | MR | Zbl

[40] V. V. Kozlov, “The Euler–Jacobi–Lee integrability theorem”, Regul. Chaotic Dyn., 18:4 (2013), 329–343 | DOI | MR | Zbl

[41] Kuznetsov S.P., “Regular and chaotic motions of the Chaplygin sleigh with periodically switched location of nonholonomic constraint”, EPL (Europhys. Lett.), 118:1 (2017), 10007 | DOI

[42] S. P. Kuznetsov, A. Yu. Jalnin, I. R. Sataev, and Yu. V. Sedova, “Phenomena of nonlinear dynamics of dissipative systems in nonholonomic mechanics of the rattleback”, Nelinein. Din., 8:4 (2012), 735–762

[43] Lamb J.S.W., Stenkin O.V., “Newhouse regions for reversible systems with infinitely many stable, unstable and elliptic periodic orbits”, Nonlinearity, 17:4 (2004), 1217–1244 | DOI | MR | Zbl

[44] A. P. Markeev, “On the dynamics of a solid on an absolutely rough plane”, J. Appl. Math. Mech., 47:4 (1984), 473–478 | DOI | MR | Zbl

[45] A. P. Markeev, Dynamics of a Body in Contact with a Solid Surface, Nauka, Moscow, 1992 (in Russian)

[46] Milnor J., “On the concept of attractor”, Commun. Math. Phys., 99:2 (1985), 177–195 | DOI | MR | Zbl

[47] S. S. Minkov, Thick attractors and skew products, Cand. Sci. (Phys.–Math.) Dissertation, Moscow State Univ., Moscow, 2016

[48] Newhouse S.E., “Diffeomorphisms with infinitely many sinks”, Topology, 13 (1974), 9–18 | DOI | MR | Zbl

[49] Newhouse S.E., “The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms”, Publ. math. Inst. hautes étud. sci., 50 (1979), 101–151 | DOI | MR

[50] Nonholonomic Dynamical Systems: Integrability, Chaos, Strange Attractors, ed. by A. V. Borisov and I. S. Mamaev, Inst. Komp'yut. Issled., Moscow, 2002 (in Russian)

[51] Palis J., Viana M., “High dimension diffeomorphisms displaying infinitely many periodic attractors”, Ann. Math. Ser. 2, 140:1 (1994), 207–250 | DOI | MR | Zbl

[52] Roberts J.A.G., Quispel G.R.W., “Chaos and time-reversal symmetry. Order and chaos in reversible dynamical systems”, Phys. Rep., 216:2–3 (1992), 63–177 | DOI | MR

[53] Romero N., “Persistence of homoclinic tangencies in higher dimensions”, Ergodic Theory Dyn. Syst., 15:4 (1995), 735–757 | DOI | MR | Zbl

[54] Ruelle D., “Small random perturbations of dynamical systems and the definition of attractors”, Commun. Math. Phys., 82 (1981), 137–151 | DOI | MR | Zbl

[55] Sevryuk M.B., Reversible systems, Lect. Notes Math., 1211, Springer, Berlin, 1986 | DOI | MR | Zbl

[56] G. K. Suslov, Theoretical Mechanics, Gostekhizdat, Moscow, 1946 (in Russian)

[57] G. K. Suslov, “On the issue of surface rolling on the surface”, Univ. Izv. (Kiev), 1892, no. 6, 1–41

[58] Topaj D., Pikovsky A., “Reversibility vs. synchronization in oscillator lattices”, Physica D, 170:2 (2002), 118–130 | DOI | MR | Zbl

[59] Turaev D., “Richness of chaos in the absolute Newhouse domain”, Proc. Int. Congr. Math. (Hyderabad (India), 2010), v. 3, Invited lectures, World Scientific, Hackensack, NJ, 2011, 1804–1815 | MR | Zbl

[60] Turaev D., “Maps close to identity and universal maps in the Newhouse domain”, Commun. Math. Phys., 335:3 (2015), 1235–1277 | DOI | MR | Zbl

[61] D. V. Turaev and L. P. Shil'nikov, “An example of a wild strange attractor”, Sb. Math., 189:2 (1998), 291–314 | DOI | DOI | MR | Zbl

[62] D. V. Turaev and L. P. Shil'nikov, “Pseudohyperbolicity and the problem on periodic perturbations of Lorenz-type attractors”, Dokl. Math., 77:1 (2008), 17–21 | DOI | MR | Zbl

[63] V. Vagner, “Geometric interpretation of the motion of nonholonomic dynamical systems”, Proc. Semin. on Vector and Tensor Analysis with Applications to Geometry, Mechanics, and Physics, No. 5, OGIZ, Moscow, 1941, 301–327 (in Russian) | MR