Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2020_308_a6, author = {A. S. Bortakovskii}, title = {Sufficient {Optimality} {Conditions} for {Hybrid} {Systems} of {Variable} {Dimension}}, journal = {Informatics and Automation}, pages = {88--100}, publisher = {mathdoc}, volume = {308}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a6/} }
A. S. Bortakovskii. Sufficient Optimality Conditions for Hybrid Systems of Variable Dimension. Informatics and Automation, Differential equations and dynamical systems, Tome 308 (2020), pp. 88-100. http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a6/
[1] A. A. Agrachev and Yu. L. Sachkov, Control Theory from the Geometric Viewpoint, Encycl. Math. Sci., 87, Springer, Berlin, 2004 | MR | Zbl
[2] V. R. Barseghyan, Control of Composite Dynamical Systems and Systems with Multipoint Intermediate Conditions, Nauka, Moscow, 2016 (in Russian)
[3] R. Bellman, Dynamic Programming, Princeton Univ. Press, Princeton, NJ, 1957 | MR | Zbl
[4] V. G. Boltyanskii, “An optimization problem with change of the phase space”, Diff. Uravn., 19:3 (1983), 518–521 | MR | MR
[5] Boltyanski V., “The maximum principle for variable structure systems”, Int. J. Control, 77:17 (2004), 1445–1451 | DOI | MR | Zbl
[6] A. S. Bortakovskii, “Sufficient conditions of optimality of the automaton part of the logical-dynamical system”, J. Comput. Syst. Sci. Int., 45:6 (2006), 917–932 | DOI | MR | Zbl
[7] A. S. Bortakovskii, “Synthesis of optimal control-systems with a change of the models of motion”, J. Comput. Syst. Sci. Int., 57:4 (2018), 543–560 | DOI | DOI | MR | Zbl
[8] A. S. Bortakovskii and G. I. Nemychenkov, “Optimal in the mean control of deterministic switchable systems given discrete inexact measurements”, J. Comput. Syst. Sci. Int., 58:1 (2019), 50–74 | DOI | DOI | MR | Zbl
[9] Dmitruk A.V., Kaganovich A.M., “The Hybrid Maximum Principle is a consequence of Pontryagin Maximum Principle”, Syst. Control Lett., 57:11 (2008), 964–970 | DOI | MR | Zbl
[10] Dubins L.E., “On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents”, Amer. J. Math., 79:3 (1957), 497–516 | DOI | MR | Zbl
[11] S. V. Emel'yanov, Systems of Automatic Control with Variable Structure, Nauka, Moscow, 1967 (in Russian)
[12] V. I. Gurman, The Extension Principle in Control Problems, Nauka, Moscow, 1985 (in Russian)
[13] N. F. Kirichenko and F. A. Sopronyuk, “Minimax control in problems of control and observation for systems with branching structures”, Obozr. Prikl. Prom. Mat., 2:1 (1995), 78–91 | Zbl
[14] A. N. Kirillov, “Dynamic systems with variable structure and dimension”, Izv. Vyssh. Uchebn. Zaved., Priborostr., 52:3 (2009), 23–28
[15] V. F. Krotov and V. I. Gurman, Methods and Problems of Optimal Control, Nauka, Moscow, 1973 (in Russian)
[16] V. A. Medvedev and V. N. Rozova, “Optimal control of stepped systems”, Autom. Remote Control, 33 (1972), 359–366 | Zbl
[17] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Fizmatgiz, Moscow, 1961 | MR | Zbl
[18] Pergamon, Oxford, 1964 | MR | Zbl
[19] Sussmann H.J., “A maximum principle for hybrid optimal control problems”, Proc. 38th IEEE Conf. on Decision and Control (Phoenix, 1999), v. 1, IEEE, Piscataway, NJ, 1999, 425–430
[20] Tsourdos A., White B., Shanmugavel M., Cooperative path planning of unmanned aerial vehicles, J. Wiley Sons, Chichester, 2011
[21] V. V. Veličenko, “Optimality conditions in control problems with intermediate conditions”, Sov. Math., Dokl., 8 (1967), 700–703 | MR | Zbl
[22] V. V. Veličenko, “Optimal control of composite systems”, Sov. Math., Dokl., 8 (1967), 1173–1175 | MR | Zbl