Sufficient Optimality Conditions for Hybrid Systems of Variable Dimension
Informatics and Automation, Differential equations and dynamical systems, Tome 308 (2020), pp. 88-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an optimal control problem for a hybrid system whose continuous motion alternates with discrete variations (switchings) under which the dimension of the state space changes. The moments and the number of switchings are not specified in advance. They are determined as a result of minimizing a functional that incorporates the cost of each switching. The state space may change, for example, when the number of control objects varies, which is typical, in particular, of control problems for groups of a variable number of aircraft. We obtain sufficient optimality conditions for such systems and derive equations for the synthesis of optimal trajectories. The application of optimality conditions is demonstrated in academic examples.
@article{TRSPY_2020_308_a6,
     author = {A. S. Bortakovskii},
     title = {Sufficient {Optimality} {Conditions} for {Hybrid} {Systems} of {Variable} {Dimension}},
     journal = {Informatics and Automation},
     pages = {88--100},
     publisher = {mathdoc},
     volume = {308},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a6/}
}
TY  - JOUR
AU  - A. S. Bortakovskii
TI  - Sufficient Optimality Conditions for Hybrid Systems of Variable Dimension
JO  - Informatics and Automation
PY  - 2020
SP  - 88
EP  - 100
VL  - 308
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a6/
LA  - ru
ID  - TRSPY_2020_308_a6
ER  - 
%0 Journal Article
%A A. S. Bortakovskii
%T Sufficient Optimality Conditions for Hybrid Systems of Variable Dimension
%J Informatics and Automation
%D 2020
%P 88-100
%V 308
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a6/
%G ru
%F TRSPY_2020_308_a6
A. S. Bortakovskii. Sufficient Optimality Conditions for Hybrid Systems of Variable Dimension. Informatics and Automation, Differential equations and dynamical systems, Tome 308 (2020), pp. 88-100. http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a6/

[1] A. A. Agrachev and Yu. L. Sachkov, Control Theory from the Geometric Viewpoint, Encycl. Math. Sci., 87, Springer, Berlin, 2004 | MR | Zbl

[2] V. R. Barseghyan, Control of Composite Dynamical Systems and Systems with Multipoint Intermediate Conditions, Nauka, Moscow, 2016 (in Russian)

[3] R. Bellman, Dynamic Programming, Princeton Univ. Press, Princeton, NJ, 1957 | MR | Zbl

[4] V. G. Boltyanskii, “An optimization problem with change of the phase space”, Diff. Uravn., 19:3 (1983), 518–521 | MR | MR

[5] Boltyanski V., “The maximum principle for variable structure systems”, Int. J. Control, 77:17 (2004), 1445–1451 | DOI | MR | Zbl

[6] A. S. Bortakovskii, “Sufficient conditions of optimality of the automaton part of the logical-dynamical system”, J. Comput. Syst. Sci. Int., 45:6 (2006), 917–932 | DOI | MR | Zbl

[7] A. S. Bortakovskii, “Synthesis of optimal control-systems with a change of the models of motion”, J. Comput. Syst. Sci. Int., 57:4 (2018), 543–560 | DOI | DOI | MR | Zbl

[8] A. S. Bortakovskii and G. I. Nemychenkov, “Optimal in the mean control of deterministic switchable systems given discrete inexact measurements”, J. Comput. Syst. Sci. Int., 58:1 (2019), 50–74 | DOI | DOI | MR | Zbl

[9] Dmitruk A.V., Kaganovich A.M., “The Hybrid Maximum Principle is a consequence of Pontryagin Maximum Principle”, Syst. Control Lett., 57:11 (2008), 964–970 | DOI | MR | Zbl

[10] Dubins L.E., “On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents”, Amer. J. Math., 79:3 (1957), 497–516 | DOI | MR | Zbl

[11] S. V. Emel'yanov, Systems of Automatic Control with Variable Structure, Nauka, Moscow, 1967 (in Russian)

[12] V. I. Gurman, The Extension Principle in Control Problems, Nauka, Moscow, 1985 (in Russian)

[13] N. F. Kirichenko and F. A. Sopronyuk, “Minimax control in problems of control and observation for systems with branching structures”, Obozr. Prikl. Prom. Mat., 2:1 (1995), 78–91 | Zbl

[14] A. N. Kirillov, “Dynamic systems with variable structure and dimension”, Izv. Vyssh. Uchebn. Zaved., Priborostr., 52:3 (2009), 23–28

[15] V. F. Krotov and V. I. Gurman, Methods and Problems of Optimal Control, Nauka, Moscow, 1973 (in Russian)

[16] V. A. Medvedev and V. N. Rozova, “Optimal control of stepped systems”, Autom. Remote Control, 33 (1972), 359–366 | Zbl

[17] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Fizmatgiz, Moscow, 1961 | MR | Zbl

[18] Pergamon, Oxford, 1964 | MR | Zbl

[19] Sussmann H.J., “A maximum principle for hybrid optimal control problems”, Proc. 38th IEEE Conf. on Decision and Control (Phoenix, 1999), v. 1, IEEE, Piscataway, NJ, 1999, 425–430

[20] Tsourdos A., White B., Shanmugavel M., Cooperative path planning of unmanned aerial vehicles, J. Wiley Sons, Chichester, 2011

[21] V. V. Veličenko, “Optimality conditions in control problems with intermediate conditions”, Sov. Math., Dokl., 8 (1967), 700–703 | MR | Zbl

[22] V. V. Veličenko, “Optimal control of composite systems”, Sov. Math., Dokl., 8 (1967), 1173–1175 | MR | Zbl