Sufficient Optimality Conditions for Hybrid Systems of Variable Dimension
Informatics and Automation, Differential equations and dynamical systems, Tome 308 (2020), pp. 88-100

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an optimal control problem for a hybrid system whose continuous motion alternates with discrete variations (switchings) under which the dimension of the state space changes. The moments and the number of switchings are not specified in advance. They are determined as a result of minimizing a functional that incorporates the cost of each switching. The state space may change, for example, when the number of control objects varies, which is typical, in particular, of control problems for groups of a variable number of aircraft. We obtain sufficient optimality conditions for such systems and derive equations for the synthesis of optimal trajectories. The application of optimality conditions is demonstrated in academic examples.
@article{TRSPY_2020_308_a6,
     author = {A. S. Bortakovskii},
     title = {Sufficient {Optimality} {Conditions} for {Hybrid} {Systems} of {Variable} {Dimension}},
     journal = {Informatics and Automation},
     pages = {88--100},
     publisher = {mathdoc},
     volume = {308},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a6/}
}
TY  - JOUR
AU  - A. S. Bortakovskii
TI  - Sufficient Optimality Conditions for Hybrid Systems of Variable Dimension
JO  - Informatics and Automation
PY  - 2020
SP  - 88
EP  - 100
VL  - 308
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a6/
LA  - ru
ID  - TRSPY_2020_308_a6
ER  - 
%0 Journal Article
%A A. S. Bortakovskii
%T Sufficient Optimality Conditions for Hybrid Systems of Variable Dimension
%J Informatics and Automation
%D 2020
%P 88-100
%V 308
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a6/
%G ru
%F TRSPY_2020_308_a6
A. S. Bortakovskii. Sufficient Optimality Conditions for Hybrid Systems of Variable Dimension. Informatics and Automation, Differential equations and dynamical systems, Tome 308 (2020), pp. 88-100. http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a6/