Tracking the Solution of a Linear Parabolic Equation Using Feedback Laws
Informatics and Automation, Differential equations and dynamical systems, Tome 308 (2020), pp. 222-231

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of tracking the solution of a parabolic equation with an unknown right-hand side by the solution of a similar parabolic equation. To solve this problem, we propose two noise-resistant algorithms based on the extremal shift method known in guaranteed control theory. The first algorithm pertains to the case of continuous measurement of solutions to the equations, and the second, to the case of discrete measurement.
Mots-clés : parabolic equations
Keywords: tracking problem.
@article{TRSPY_2020_308_a15,
     author = {V. I. Maksimov},
     title = {Tracking the {Solution} of a {Linear} {Parabolic} {Equation} {Using} {Feedback} {Laws}},
     journal = {Informatics and Automation},
     pages = {222--231},
     publisher = {mathdoc},
     volume = {308},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a15/}
}
TY  - JOUR
AU  - V. I. Maksimov
TI  - Tracking the Solution of a Linear Parabolic Equation Using Feedback Laws
JO  - Informatics and Automation
PY  - 2020
SP  - 222
EP  - 231
VL  - 308
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a15/
LA  - ru
ID  - TRSPY_2020_308_a15
ER  - 
%0 Journal Article
%A V. I. Maksimov
%T Tracking the Solution of a Linear Parabolic Equation Using Feedback Laws
%J Informatics and Automation
%D 2020
%P 222-231
%V 308
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a15/
%G ru
%F TRSPY_2020_308_a15
V. I. Maksimov. Tracking the Solution of a Linear Parabolic Equation Using Feedback Laws. Informatics and Automation, Differential equations and dynamical systems, Tome 308 (2020), pp. 222-231. http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a15/