Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2020_308_a11, author = {V. V. Denisenko and V. M. Deundyak}, title = {Fredholm {Property} of {Integral} {Operators} with {Homogeneous} {Kernels} of {Compact} {Type} in the $L_2$ {Space} on the {Heisenberg} {Group}}, journal = {Informatics and Automation}, pages = {167--180}, publisher = {mathdoc}, volume = {308}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a11/} }
TY - JOUR AU - V. V. Denisenko AU - V. M. Deundyak TI - Fredholm Property of Integral Operators with Homogeneous Kernels of Compact Type in the $L_2$ Space on the Heisenberg Group JO - Informatics and Automation PY - 2020 SP - 167 EP - 180 VL - 308 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a11/ LA - ru ID - TRSPY_2020_308_a11 ER -
%0 Journal Article %A V. V. Denisenko %A V. M. Deundyak %T Fredholm Property of Integral Operators with Homogeneous Kernels of Compact Type in the $L_2$ Space on the Heisenberg Group %J Informatics and Automation %D 2020 %P 167-180 %V 308 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a11/ %G ru %F TRSPY_2020_308_a11
V. V. Denisenko; V. M. Deundyak. Fredholm Property of Integral Operators with Homogeneous Kernels of Compact Type in the $L_2$ Space on the Heisenberg Group. Informatics and Automation, Differential equations and dynamical systems, Tome 308 (2020), pp. 167-180. http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a11/
[1] O. G. Avsyankin, “On the $C^*$-algebra generated by multidimensional integral operators with homogeneous kernels and multiplicative translations”, Dokl. Math., 77:2 (2008), 298–299 | DOI | MR | MR | Zbl
[2] O. G. Avsyankin, “On multidimensional integral operators with homogeneous kernels perturbed by one-sided multiplicative shift operators”, Vladikavkaz. Mat. Zh., 15:1 (2013), 5–13 | MR | Zbl
[3] Capogna L., Danielli D., Pauls S.D., Tyson J.T., An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem, Prog. Math., 259, Birkhäuser, Basel, 2007 | MR | Zbl
[4] Chirikjian G.S., Kyatkin A.B., Engineering applications of noncommutative harmonic analysis. With emphasis on rotation and motion groups, CRC Press, Boca Raton, FL, 2001 | MR | Zbl
[5] V. V. Denisenko and V. M. Deundyak, “On the boundedness of integral operators with homogeneous kernels on the Heisenberg group with Korányi norm”, Izv. Vyssh. Uchebn. Zaved., Sev.-Kavk. Reg., Estestv. Nauki, 2017, no. 3-1, 21–27
[6] V. V. Denisenko and V. M. Deundyak, “Invertibility of integral operators with homogeneous kernels of compact type on the Heisenberg group”, Mat. Fiz. Komp'yut. Model., 21:3 (2018), 5–18 | MR
[7] V. M. Deundyak, “Multidimensional integral operators with homogeneous kernels of compact type and multiplicatively weakly oscillating coefficients”, Math. Notes, 87:5 (2010), 672–686 | DOI | DOI | MR | Zbl
[8] Deundyak V.M., “Convolution operators with weakly oscillating coefficients in Hilbert moduli on groups and applications”, J. Math. Sci., 208:1 (2015), 100–108 | DOI | MR | Zbl
[9] V. M. Deundyak and D. A. Leonov, “Fourier method for solving two-sided convolution equations on finite noncommutative groups”, Comput. Math. Math. Phys., 58:10 (2018), 1562–1572 | DOI | MR | Zbl
[10] V. M. Deundyak and E. I. Miroshnikova, “The boundedness and the Fredholm property of integral operators with anisotropically homogeneous kernels of compact type and variable coefficients”, Russ. Math., 56:7 (2012), 1–14 | DOI | MR | Zbl
[11] V. M. Deundyak and B. Ya. Shteinberg, “Index of convolution operators with slowly varying coefficients on Abelian groups”, Funct. Anal. Appl., 19:4 (1985), 321–323 | DOI | MR | Zbl | Zbl
[12] A. N. Dranishnikov and S. Ferry, “On the Higson–Roe corona”, Russ. Math. Surv., 52:5 (1997), 1017–1028 | DOI | DOI | MR | Zbl
[13] Karapetiants N., Samko S., Equations with involutive operators, Birkhäuser, Boston, 2001 | MR | Zbl
[14] Kisil V.V., “Symmetry, geometry and quantization with hypercomplex numbers”, Geometry, integrability and quantization: Proc. 18th Conf. (Varna, 2016), Avangard Prima, Sofia, 2017, 11–76 | DOI | MR | Zbl
[15] V. B. Korotkov, Integral Operators, Nauka, Novosibirsk, 1983 (in Russian) | MR
[16] Krantz S.G., Explorations in harmonic analysis. With applications to complex function theory and the Heisenberg group, Appl. Numer. Harmon. Anal., Birkhäuser, Boston, 2009 | MR | Zbl
[17] G. J. Murphy, $C^*$-Algebras and Operator Theory, Academic, Boston, 1990 | MR
[18] B. Ya. Shteinberg, “Convolution operators on locally compact groups”, Funct. Anal. Appl., 15:3 (1981), 233–234 | DOI | MR
[19] I. B. Simonenko, “A new general method of investigating linear operator equations of the type of singular integral equations. II”, Izv. Akad. Nauk SSSR, Ser. Mat., 29:4 (1965), 757–782 | Zbl