Fredholm Property of Integral Operators with Homogeneous Kernels of Compact Type in the $L_2$ Space on the Heisenberg Group
Informatics and Automation, Differential equations and dynamical systems, Tome 308 (2020), pp. 167-180.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Heisenberg group $\mathbb H_n$ with Korányi norm. In the space $L_2(\mathbb H_n)$, we introduce integral operators with homogeneous kernels of compact type and multiplicatively weakly oscillating coefficients. For the unital $C^*$-algebra $\mathfrak W(\mathbb H_n)$ generated by such operators, we construct a symbolic calculus and in terms of this calculus formulate necessary and sufficient conditions for an operator in $\mathfrak W(\mathbb H_n)$ to be a Fredholm operator.
@article{TRSPY_2020_308_a11,
     author = {V. V. Denisenko and V. M. Deundyak},
     title = {Fredholm {Property} of {Integral} {Operators} with {Homogeneous} {Kernels} of {Compact} {Type} in the $L_2$ {Space} on the {Heisenberg} {Group}},
     journal = {Informatics and Automation},
     pages = {167--180},
     publisher = {mathdoc},
     volume = {308},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a11/}
}
TY  - JOUR
AU  - V. V. Denisenko
AU  - V. M. Deundyak
TI  - Fredholm Property of Integral Operators with Homogeneous Kernels of Compact Type in the $L_2$ Space on the Heisenberg Group
JO  - Informatics and Automation
PY  - 2020
SP  - 167
EP  - 180
VL  - 308
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a11/
LA  - ru
ID  - TRSPY_2020_308_a11
ER  - 
%0 Journal Article
%A V. V. Denisenko
%A V. M. Deundyak
%T Fredholm Property of Integral Operators with Homogeneous Kernels of Compact Type in the $L_2$ Space on the Heisenberg Group
%J Informatics and Automation
%D 2020
%P 167-180
%V 308
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a11/
%G ru
%F TRSPY_2020_308_a11
V. V. Denisenko; V. M. Deundyak. Fredholm Property of Integral Operators with Homogeneous Kernels of Compact Type in the $L_2$ Space on the Heisenberg Group. Informatics and Automation, Differential equations and dynamical systems, Tome 308 (2020), pp. 167-180. http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a11/

[1] O. G. Avsyankin, “On the $C^*$-algebra generated by multidimensional integral operators with homogeneous kernels and multiplicative translations”, Dokl. Math., 77:2 (2008), 298–299 | DOI | MR | MR | Zbl

[2] O. G. Avsyankin, “On multidimensional integral operators with homogeneous kernels perturbed by one-sided multiplicative shift operators”, Vladikavkaz. Mat. Zh., 15:1 (2013), 5–13 | MR | Zbl

[3] Capogna L., Danielli D., Pauls S.D., Tyson J.T., An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem, Prog. Math., 259, Birkhäuser, Basel, 2007 | MR | Zbl

[4] Chirikjian G.S., Kyatkin A.B., Engineering applications of noncommutative harmonic analysis. With emphasis on rotation and motion groups, CRC Press, Boca Raton, FL, 2001 | MR | Zbl

[5] V. V. Denisenko and V. M. Deundyak, “On the boundedness of integral operators with homogeneous kernels on the Heisenberg group with Korányi norm”, Izv. Vyssh. Uchebn. Zaved., Sev.-Kavk. Reg., Estestv. Nauki, 2017, no. 3-1, 21–27

[6] V. V. Denisenko and V. M. Deundyak, “Invertibility of integral operators with homogeneous kernels of compact type on the Heisenberg group”, Mat. Fiz. Komp'yut. Model., 21:3 (2018), 5–18 | MR

[7] V. M. Deundyak, “Multidimensional integral operators with homogeneous kernels of compact type and multiplicatively weakly oscillating coefficients”, Math. Notes, 87:5 (2010), 672–686 | DOI | DOI | MR | Zbl

[8] Deundyak V.M., “Convolution operators with weakly oscillating coefficients in Hilbert moduli on groups and applications”, J. Math. Sci., 208:1 (2015), 100–108 | DOI | MR | Zbl

[9] V. M. Deundyak and D. A. Leonov, “Fourier method for solving two-sided convolution equations on finite noncommutative groups”, Comput. Math. Math. Phys., 58:10 (2018), 1562–1572 | DOI | MR | Zbl

[10] V. M. Deundyak and E. I. Miroshnikova, “The boundedness and the Fredholm property of integral operators with anisotropically homogeneous kernels of compact type and variable coefficients”, Russ. Math., 56:7 (2012), 1–14 | DOI | MR | Zbl

[11] V. M. Deundyak and B. Ya. Shteinberg, “Index of convolution operators with slowly varying coefficients on Abelian groups”, Funct. Anal. Appl., 19:4 (1985), 321–323 | DOI | MR | Zbl | Zbl

[12] A. N. Dranishnikov and S. Ferry, “On the Higson–Roe corona”, Russ. Math. Surv., 52:5 (1997), 1017–1028 | DOI | DOI | MR | Zbl

[13] Karapetiants N., Samko S., Equations with involutive operators, Birkhäuser, Boston, 2001 | MR | Zbl

[14] Kisil V.V., “Symmetry, geometry and quantization with hypercomplex numbers”, Geometry, integrability and quantization: Proc. 18th Conf. (Varna, 2016), Avangard Prima, Sofia, 2017, 11–76 | DOI | MR | Zbl

[15] V. B. Korotkov, Integral Operators, Nauka, Novosibirsk, 1983 (in Russian) | MR

[16] Krantz S.G., Explorations in harmonic analysis. With applications to complex function theory and the Heisenberg group, Appl. Numer. Harmon. Anal., Birkhäuser, Boston, 2009 | MR | Zbl

[17] G. J. Murphy, $C^*$-Algebras and Operator Theory, Academic, Boston, 1990 | MR

[18] B. Ya. Shteinberg, “Convolution operators on locally compact groups”, Funct. Anal. Appl., 15:3 (1981), 233–234 | DOI | MR

[19] I. B. Simonenko, “A new general method of investigating linear operator equations of the type of singular integral equations. II”, Izv. Akad. Nauk SSSR, Ser. Mat., 29:4 (1965), 757–782 | Zbl