Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2020_308_a10, author = {V. Z. Grines and E. V. Kruglov and O. V. Pochinka}, title = {Scenario of a {Simple} {Transition} from a {Structurally} {Stable} {3-Diffeomorphism} with a {Two-Dimensional} {Expanding} {Attractor} to a {DA} {Diffeomorphism}}, journal = {Informatics and Automation}, pages = {152--166}, publisher = {mathdoc}, volume = {308}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a10/} }
TY - JOUR AU - V. Z. Grines AU - E. V. Kruglov AU - O. V. Pochinka TI - Scenario of a Simple Transition from a Structurally Stable 3-Diffeomorphism with a Two-Dimensional Expanding Attractor to a DA Diffeomorphism JO - Informatics and Automation PY - 2020 SP - 152 EP - 166 VL - 308 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a10/ LA - ru ID - TRSPY_2020_308_a10 ER -
%0 Journal Article %A V. Z. Grines %A E. V. Kruglov %A O. V. Pochinka %T Scenario of a Simple Transition from a Structurally Stable 3-Diffeomorphism with a Two-Dimensional Expanding Attractor to a DA Diffeomorphism %J Informatics and Automation %D 2020 %P 152-166 %V 308 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a10/ %G ru %F TRSPY_2020_308_a10
V. Z. Grines; E. V. Kruglov; O. V. Pochinka. Scenario of a Simple Transition from a Structurally Stable 3-Diffeomorphism with a Two-Dimensional Expanding Attractor to a DA Diffeomorphism. Informatics and Automation, Differential equations and dynamical systems, Tome 308 (2020), pp. 152-166. http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a10/
[1] Banyaga A., “On the structure of the group of equivariant diffeomorphisms”, Topology, 16:3 (1977), 279–283 | DOI | MR | Zbl
[2] Bonatti C., Grines V.Z., “Knots as topological invariants for gradient-like diffeomorphisms of the sphere $S^3$”, J. Dyn. Control Syst., 6:4 (2000), 579–602 | DOI | MR | Zbl
[3] Debrunner H., Fox R., “A mildly wild imbedding of an $n$-frame”, Duke Math. J., 27:3 (1960), 425–429 | DOI | MR | Zbl
[4] Fox R.H., Artin E., “Some wild cells and spheres in three-dimensional space”, Ann. Math. Ser. 2, 99 (1948), 979–990 | DOI | MR
[5] Franks J., “Necessary conditions for stability of diffeomorphisms”, Trans. Amer. Math. Soc., 158:2 (1971), 301–308 | DOI | MR | Zbl
[6] V. Z. Grines, “The topological equivalence of one-dimensional basic sets of diffeomorphisms on two-dimensional manifolds”, Usp. Mat. Nauk, 29:6 (1974), 163–164 | MR | Zbl
[7] V. Z. Grines, E. Ya. Gurevich, V. S. Medvedev, and O. V. Pochinka, “On embedding a Morse–Smale diffeomorphism on a 3-manifold in a topological flow”, Sb. Math., 203:12 (2012), 1761–1784 | DOI | DOI | MR | Zbl
[8] Grines V.Z., Kruglov E.V., Medvedev T.V., Pochinka O.V., “On embedding of arcs and circles in 3-manifolds and its application to dynamics of structurally stable 3-diffeomorphisms with two-dimensional expanding attractors”, Topology Appl., 271 (2020), 106989 ; arXiv: 1812.01436 [math.DS] | DOI | MR | Zbl
[9] Grines V.Z., Medvedev T.V., Pochinka O.V., Dynamical systems on 2- and 3-manifolds, Dev. Math., 46, Springer, Cham, 2016 | MR | Zbl
[10] V. Z. Grines and E. V. Zhuzhoma, “The topological classification of orientable attractors on an $n$-dimensional torus”, Russ. Math. Surv., 34:4 (1979), 163–164 | DOI | MR | Zbl
[11] V. Z. Grines and E. V. Zhuzhoma, “On rough diffeomorphisms with expanding attractors or contracting repellers of codimension one”, Dokl. Math., 62:2 (2000), 274–276 | MR | Zbl
[12] V. Z. Grines and E. V. Zhuzhoma, “Structurally stable diffeomorphisms with basis sets of codimension one”, Izv. Math., 66:2 (2002), 223–284 | DOI | DOI | MR | Zbl
[13] Grines V., Zhuzhoma E., “On structurally stable diffeomorphisms with codimension one expanding attractors”, Trans. Amer. Math. Soc., 357:2 (2005), 617–667 | DOI | MR | Zbl
[14] V. Z. Grines, Ye. V. Zhuzhoma, and O. V. Pochinka, “Rough diffeomorphisms with basic sets of codimension one”, J. Math. Sci., 225:2 (2017), 195–219 | DOI | MR | Zbl
[15] Hirsch M., Palis J., Pugh C., Shub M., “Neighborhoods of hyperbolic sets”, Invent. math., 9 (1970), 121–134 | DOI | MR | Zbl
[16] Mañé R., “A proof of the $C^1$ stability conjecture”, Publ. math. Inst. hautes étud. sci., 66 (1987), 161–210 | DOI | MR
[17] Milnor J.W., Lectures on the h-cobordism theorem, Princeton Univ. Press, Princeton, 1965 | MR | Zbl
[18] Munkres J., “Obstructions to the smoothing of piecewise-differentiable homeomorphisms”, Ann. Math. Ser. 2, 72:3 (1960), 521–554 | DOI | MR | Zbl
[19] Robinson C., “Structural stability of $C^1$ diffeomorphisms”, J. Diff. Eqns., 22:1 (1976), 28–73 | DOI | MR | Zbl
[20] Smale S., “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | DOI | MR | Zbl
[21] E. V. Zhuzhoma and V. S. Medvedev, “On non-orientable two-dimensional basic sets on 3-manifolds”, Sb. Math., 193:6 (2002), 869–888 | DOI | DOI | MR | Zbl
[22] E. V. Zhuzhoma and V. S. Medvedev, “On typical diffeotopy of rough diffeomorphisms with expanding attractor of codimension one”, Math. Notes, 74:3 (2003), 453–456 | DOI | DOI | MR | Zbl