The Mellin Transform and the Plancherel Theorem for the Discrete Heisenberg Group
Informatics and Automation, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 193-211

Voir la notice de l'article provenant de la source Math-Net.Ru

In the classical representation theory of locally compact groups, there are well-known constructions of a unitary dual space of irreducible representations, the Fourier transform, and the Plancherel theorem. In this paper, we present analogs of these constructions for the discrete Heisenberg group and its irreducible infinite-dimensional representations in a vector space without topology.
@article{TRSPY_2019_307_a9,
     author = {A. N. Parshin},
     title = {The {Mellin} {Transform} and the {Plancherel} {Theorem} for the {Discrete} {Heisenberg} {Group}},
     journal = {Informatics and Automation},
     pages = {193--211},
     publisher = {mathdoc},
     volume = {307},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a9/}
}
TY  - JOUR
AU  - A. N. Parshin
TI  - The Mellin Transform and the Plancherel Theorem for the Discrete Heisenberg Group
JO  - Informatics and Automation
PY  - 2019
SP  - 193
EP  - 211
VL  - 307
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a9/
LA  - ru
ID  - TRSPY_2019_307_a9
ER  - 
%0 Journal Article
%A A. N. Parshin
%T The Mellin Transform and the Plancherel Theorem for the Discrete Heisenberg Group
%J Informatics and Automation
%D 2019
%P 193-211
%V 307
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a9/
%G ru
%F TRSPY_2019_307_a9
A. N. Parshin. The Mellin Transform and the Plancherel Theorem for the Discrete Heisenberg Group. Informatics and Automation, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 193-211. http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a9/