The Mellin Transform and the Plancherel Theorem for the Discrete Heisenberg Group
Informatics and Automation, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 193-211.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the classical representation theory of locally compact groups, there are well-known constructions of a unitary dual space of irreducible representations, the Fourier transform, and the Plancherel theorem. In this paper, we present analogs of these constructions for the discrete Heisenberg group and its irreducible infinite-dimensional representations in a vector space without topology.
@article{TRSPY_2019_307_a9,
     author = {A. N. Parshin},
     title = {The {Mellin} {Transform} and the {Plancherel} {Theorem} for the {Discrete} {Heisenberg} {Group}},
     journal = {Informatics and Automation},
     pages = {193--211},
     publisher = {mathdoc},
     volume = {307},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a9/}
}
TY  - JOUR
AU  - A. N. Parshin
TI  - The Mellin Transform and the Plancherel Theorem for the Discrete Heisenberg Group
JO  - Informatics and Automation
PY  - 2019
SP  - 193
EP  - 211
VL  - 307
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a9/
LA  - ru
ID  - TRSPY_2019_307_a9
ER  - 
%0 Journal Article
%A A. N. Parshin
%T The Mellin Transform and the Plancherel Theorem for the Discrete Heisenberg Group
%J Informatics and Automation
%D 2019
%P 193-211
%V 307
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a9/
%G ru
%F TRSPY_2019_307_a9
A. N. Parshin. The Mellin Transform and the Plancherel Theorem for the Discrete Heisenberg Group. Informatics and Automation, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 193-211. http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a9/

[1] S. A. Arnal' and A. N. Parshin, “On irreducible representations of discrete Heisenberg groups”, Math. Notes, 92:3 (2012), 295–301 | DOI | DOI | MR | Zbl

[2] M. Atiyah, The Geometry and Physics of Knots, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[3] A. A. Beilinson, “Residues and adeles”, Funct. Anal. Appl., 14:1 (1980), 34–35 | DOI | MR | Zbl

[4] Beloshapka I., “Irreducible representations of the group of unipotent matrices of order 4 over integers”, Int. Math. Res. Not., 2018 | DOI

[5] I. V. Beloshapka and S. O. Gorchinskiy, “Irreducible representations of finitely generated nilpotent groups”, Sb. Math., 207:1 (2016), 41–64 | DOI | DOI | MR | Zbl

[6] Brown I.D., “Representation of finitely generated nilpotent groups”, Pac. J. Math., 45 (1973), 13–26 | DOI | MR | Zbl

[7] R. Ya. Budylin, “Conjugacy classes in discrete Heisenberg groups”, Sb. Math., 205:8 (2014), 1069–1079 | DOI | DOI | MR | MR | Zbl

[8] Cartier P., “Representations of $p$-adic groups: A survey”, Automorphic forms, representations and $L$-functions, Pt. 1, Proc. Symp. Pure Math., 33, Amer. Math. Soc., Providence, RI, 1979, 111–155 | DOI | MR

[9] J. Dixmier, Les $C^*$-algèbres et leurs représentations, Gauthier-Villars, Paris, 1969 | MR | Zbl

[10] Fulton W., Harris J., Representation theory: A first course, Grad. Texts Math., 129, Springer, New York, 1991 | MR | Zbl

[11] A. A. Kirillov, Lectures on the Orbit Method, Grad. Stud. Math., 64, Am. Math. Soc., Providence, RI, 2004 | DOI | MR | Zbl

[12] Lubotzky A., Magid A.R., Varieties of representations of finitely generated groups, Mem. AMS, 58, N 336, Amer. Math. Soc., Providence, RI, 1985 | MR

[13] I. G. Macdonald, Spherical Functions on a Group of $p$-Adic Type, Publ. Ramanujan Inst., 2, Univ. Madras, Madras, 1971 | MR | MR

[14] D. Mumford, Tata Lectures on Theta. I, Prog. Math., 28, Birhäuser, Boston, 1983 | DOI | MR | Zbl

[15] D. V. Osipov and A. N. Parshin, “Representations of the discrete Heisenberg group on distribution spaces of two-dimensional local fields”, Proc. Steklov Inst. Math., 292 (2016), 185–201 | DOI | DOI | MR | Zbl

[16] D. V. Osipov and A. N. Parshin, “Harmonic analysis on rank 2 valuation group of a two-dimensional local field”, Sb. Math., 211:1 (2020) | DOI | DOI | MR

[17] A. N. Paršin, “On the arithmetic of two-dimensional schemes. I: Distributions and residues”, Math. USSR, Izv., 10:4 (1976), 695–729 | DOI | MR | Zbl

[18] A. N. Parshin, “On holomorphic representations of discrete Heisenberg groups”, Funct. Anal. Appl., 44:2 (2010), 156–159 | DOI | DOI | MR | MR | Zbl

[19] Parshin A.N., “Representations of higher adelic groups and arithmetic”, Proc. Int. Congr. Math. (Hyderabad, India, 2010), v. 1, Plenary lectures and ceremonies, World Scientific, Hackensack, NJ, 2011, 362–392 | Zbl

[20] A. Pressley and G. Segal, Loop Groups, Oxford Math. Monogr., Clarendon Press, Oxford, 1988 | MR | Zbl

[21] Pytlik T., “A Plancherel measure for the discrete Heisenberg group”, Colloq. math., 42 (1979), 355–359 | DOI | MR | Zbl

[22] Pytlik T., “$L^1$-harmonic analysis on semi-direct products of abelian groups”, Monatsh. Math., 93:4 (1982), 309–328 | DOI | MR | Zbl

[23] A. N. Rudakov and I. R. Shafarevich, “Irreducible representations of a simple three-dimensional Lie algebra over a field of finite characteristic”, Math. Notes, 2:5 (1967), 760–767 | DOI | MR | Zbl

[24] J.-P. Serre, Représentations linéaires des groupes finis, Hermann, Paris, 1967 | MR

[25] Urakawa H., “The heat equation on compact Lie group”, Osaka J. Math., 12:2 (1975), 285–297 | MR | Zbl