Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2019_307_a8, author = {I. A. Panin and C. Walter}, title = {On the {Relation} of {Symplectic} {Algebraic} {Cobordism} to {Hermitian} $K${-Theory}}, journal = {Informatics and Automation}, pages = {180--192}, publisher = {mathdoc}, volume = {307}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a8/} }
I. A. Panin; C. Walter. On the Relation of Symplectic Algebraic Cobordism to Hermitian $K$-Theory. Informatics and Automation, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 180-192. http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a8/
[1] Cazanave C., “Algebraic homotopy classes of rational functions”, Ann. sci. Éc. norm. supér. Sér. 4, 45:4 (2012), 511–534 | MR | Zbl
[2] Conner P.E., Floyd E.E., The relation of cobordism to K-theories, Lect. Notes Math., 28, Springer, Berlin, 1966 | DOI | MR | Zbl
[3] Morel F., $\mathbb A^1$-algebraic topology over a field, Lect. Notes Math., 2052, Springer, Berlin, 2012 | DOI | MR
[4] Nenashev A., “Gysin maps in Balmer–Witt theory”, J. Pure Appl. Algebra, 211:1 (2007), 203–221 | DOI | MR | Zbl
[5] Panin I., “Oriented cohomology theories of algebraic varieties. II (after I. Panin and A. Smirnov)”, Homology, Homotopy Appl., 11:1 (2009), 349–405 | DOI | MR | Zbl
[6] Panin I., Pimenov K., Röndigs O., “On the relation of Voevodsky's algebraic cobordism to Quillen's $K$-theory”, Invent. math., 175:2 (2009), 435–451 | DOI | MR | Zbl
[7] Panin I., Walter C., On the algebraic cobordism spectra $\mathbf {MSL}$ and $\mathbf {MSp}$, E-print, 2018, arXiv: 1011.0651 [math.AG]
[8] I. Panin and C. Walter, “On the motivic commutative ring spectrum $\mathbf {BO}$”, St. Petersbg. Math. J., 30:6 (2019), 933–972 ; Algebra Anal., 30:6 (2018), 43–96 | DOI | MR | Zbl
[9] Panin I., Walter C., Quaternionic Grassmannians and Borel classes in algebraic geometry, E-print, 2018, arXiv: 1011.0649 [math.AG]
[10] Schlichting M., “Hermitian $K$-theory of exact categories”, J. K-Theory, 5:1 (2010), 105–165 | DOI | MR | Zbl
[11] Schlichting M., “The Mayer–Vietoris principle for Grothendieck–Witt groups of schemes”, Invent. math., 179:2 (2010), 349–433 | DOI | MR | Zbl
[12] Schlichting M., “Hermitian $K$-theory, derived equivalences and Karoubi's fundamental theorem”, J. Pure Appl. Algebra, 221:7 (2017), 1729–1844 | DOI | MR | Zbl
[13] Voevodsky V., “$\mathbf A^1$-homotopy theory”, Doc. Math., v. Extra Vol., ICM, I, Berlin, 1998, 579–604 | MR