On the Relation of Symplectic Algebraic Cobordism to Hermitian $K$-Theory
Informatics and Automation, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 180-192.

Voir la notice de l'article provenant de la source Math-Net.Ru

We reconstruct hermitian $K$-theory via algebraic symplectic cobordism. In the motivic stable homotopy category $\mathrm {SH}(S)$, there is a unique morphism $\varphi \colon \mathbf {MSp}\to \mathbf {BO}$ of commutative ring $T$-spectra which sends the Thom class $\mathrm {th}^{\mathbf {MSp}}$ to the Thom class $\mathrm {th}^{\mathbf {BO}}$. Using $\varphi $ we construct an isomorphism of bigraded ring cohomology theories on the category $\mathcal Sm\mathcal Op/S$, $\overline \varphi \colon \mathbf {MSp}^{*,*}(X,U)\otimes _{\mathbf {MSp}^{4*,2*}(\mathrm {pt})} \mathbf {BO}^{4*,2*}(\mathrm {pt}) \cong \mathbf {BO}^{*,*}(X,U)$. The result is an algebraic version of the theorem of Conner and Floyd reconstructing real $K$-theory using symplectic cobordism. Rewriting the bigrading as $\mathbf {MSp}^{p,q}=\mathbf {MSp}^{[q]}_{2\smash {q-p}}$, we have an isomorphism $\overline \varphi \colon \mathbf {MSp}^{[*]}_*(X,U)\otimes _{\mathbf {MSp}^{[2*]}_0(\mathrm {pt})} \mathrm {KO}^{[2*]}_0(\mathrm {pt}) \cong \mathrm {KO}^{[*]}_*(X,U)$, where the $\mathrm {KO}^{[n]}_i(X,U)$ are Schlichting's hermitian $K$-theory groups.
@article{TRSPY_2019_307_a8,
     author = {I. A. Panin and C. Walter},
     title = {On the {Relation} of {Symplectic} {Algebraic} {Cobordism} to {Hermitian} $K${-Theory}},
     journal = {Informatics and Automation},
     pages = {180--192},
     publisher = {mathdoc},
     volume = {307},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a8/}
}
TY  - JOUR
AU  - I. A. Panin
AU  - C. Walter
TI  - On the Relation of Symplectic Algebraic Cobordism to Hermitian $K$-Theory
JO  - Informatics and Automation
PY  - 2019
SP  - 180
EP  - 192
VL  - 307
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a8/
LA  - ru
ID  - TRSPY_2019_307_a8
ER  - 
%0 Journal Article
%A I. A. Panin
%A C. Walter
%T On the Relation of Symplectic Algebraic Cobordism to Hermitian $K$-Theory
%J Informatics and Automation
%D 2019
%P 180-192
%V 307
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a8/
%G ru
%F TRSPY_2019_307_a8
I. A. Panin; C. Walter. On the Relation of Symplectic Algebraic Cobordism to Hermitian $K$-Theory. Informatics and Automation, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 180-192. http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a8/

[1] Cazanave C., “Algebraic homotopy classes of rational functions”, Ann. sci. Éc. norm. supér. Sér. 4, 45:4 (2012), 511–534 | MR | Zbl

[2] Conner P.E., Floyd E.E., The relation of cobordism to K-theories, Lect. Notes Math., 28, Springer, Berlin, 1966 | DOI | MR | Zbl

[3] Morel F., $\mathbb A^1$-algebraic topology over a field, Lect. Notes Math., 2052, Springer, Berlin, 2012 | DOI | MR

[4] Nenashev A., “Gysin maps in Balmer–Witt theory”, J. Pure Appl. Algebra, 211:1 (2007), 203–221 | DOI | MR | Zbl

[5] Panin I., “Oriented cohomology theories of algebraic varieties. II (after I. Panin and A. Smirnov)”, Homology, Homotopy Appl., 11:1 (2009), 349–405 | DOI | MR | Zbl

[6] Panin I., Pimenov K., Röndigs O., “On the relation of Voevodsky's algebraic cobordism to Quillen's $K$-theory”, Invent. math., 175:2 (2009), 435–451 | DOI | MR | Zbl

[7] Panin I., Walter C., On the algebraic cobordism spectra $\mathbf {MSL}$ and $\mathbf {MSp}$, E-print, 2018, arXiv: 1011.0651 [math.AG]

[8] I. Panin and C. Walter, “On the motivic commutative ring spectrum $\mathbf {BO}$”, St. Petersbg. Math. J., 30:6 (2019), 933–972 ; Algebra Anal., 30:6 (2018), 43–96 | DOI | MR | Zbl

[9] Panin I., Walter C., Quaternionic Grassmannians and Borel classes in algebraic geometry, E-print, 2018, arXiv: 1011.0649 [math.AG]

[10] Schlichting M., “Hermitian $K$-theory of exact categories”, J. K-Theory, 5:1 (2010), 105–165 | DOI | MR | Zbl

[11] Schlichting M., “The Mayer–Vietoris principle for Grothendieck–Witt groups of schemes”, Invent. math., 179:2 (2010), 349–433 | DOI | MR | Zbl

[12] Schlichting M., “Hermitian $K$-theory, derived equivalences and Karoubi's fundamental theorem”, J. Pure Appl. Algebra, 221:7 (2017), 1729–1844 | DOI | MR | Zbl

[13] Voevodsky V., “$\mathbf A^1$-homotopy theory”, Doc. Math., v. Extra Vol., ICM, I, Berlin, 1998, 579–604 | MR