Arithmetic of Certain $\ell $-Extensions Ramified at Three Places
Informatics and Automation, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 78-99

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\ell $ be a regular odd prime number, $k$ the $\ell $th cyclotomic field, $k_\infty $ the cyclotomic $\mathbb Z_\ell $-extension of $k$, $K$ a cyclic extension of $k$ of degree $\ell $, and $K_\infty =K\cdot k_\infty $. Under the assumption that there are exactly three places not over $\ell $ that ramify in the extension $K_\infty /k_\infty $ and $K$ satisfies some additional conditions, we study the structure of the Iwasawa module $T_\ell (K_\infty )$ of $K_\infty $ as a Galois module. In particular, we prove that $T_\ell (K_\infty )$ is a cyclic $G(K_\infty /k_\infty )$-module and the Galois group $\Gamma =G(K_\infty /K)$ acts on $T_\ell (K_\infty )$ as $\sqrt {\varkappa }$, where $\varkappa \colon \Gamma \to \mathbb Z_\ell ^\times $ is the cyclotomic character.
@article{TRSPY_2019_307_a3,
     author = {L. V. Kuz'min},
     title = {Arithmetic of {Certain} $\ell ${-Extensions} {Ramified} at {Three} {Places}},
     journal = {Informatics and Automation},
     pages = {78--99},
     publisher = {mathdoc},
     volume = {307},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a3/}
}
TY  - JOUR
AU  - L. V. Kuz'min
TI  - Arithmetic of Certain $\ell $-Extensions Ramified at Three Places
JO  - Informatics and Automation
PY  - 2019
SP  - 78
EP  - 99
VL  - 307
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a3/
LA  - ru
ID  - TRSPY_2019_307_a3
ER  - 
%0 Journal Article
%A L. V. Kuz'min
%T Arithmetic of Certain $\ell $-Extensions Ramified at Three Places
%J Informatics and Automation
%D 2019
%P 78-99
%V 307
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a3/
%G ru
%F TRSPY_2019_307_a3
L. V. Kuz'min. Arithmetic of Certain $\ell $-Extensions Ramified at Three Places. Informatics and Automation, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 78-99. http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a3/