Spectral Algebras and Non-commutative Hodge-to-de Rham Degeneration
Informatics and Automation, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 63-77

Voir la notice de l'article provenant de la source Math-Net.Ru

We revisit the non-commutative Hodge-to-de Rham degeneration theorem of the first author and present its proof in a somewhat streamlined and improved form that explicitly uses spectral algebraic geometry. We also try to explain why topology is essential to the proof.
@article{TRSPY_2019_307_a2,
     author = {D. B. Kaledin and A. A. Konovalov and K. O. Magidson},
     title = {Spectral {Algebras} and {Non-commutative} {Hodge-to-de} {Rham} {Degeneration}},
     journal = {Informatics and Automation},
     pages = {63--77},
     publisher = {mathdoc},
     volume = {307},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a2/}
}
TY  - JOUR
AU  - D. B. Kaledin
AU  - A. A. Konovalov
AU  - K. O. Magidson
TI  - Spectral Algebras and Non-commutative Hodge-to-de Rham Degeneration
JO  - Informatics and Automation
PY  - 2019
SP  - 63
EP  - 77
VL  - 307
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a2/
LA  - ru
ID  - TRSPY_2019_307_a2
ER  - 
%0 Journal Article
%A D. B. Kaledin
%A A. A. Konovalov
%A K. O. Magidson
%T Spectral Algebras and Non-commutative Hodge-to-de Rham Degeneration
%J Informatics and Automation
%D 2019
%P 63-77
%V 307
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a2/
%G ru
%F TRSPY_2019_307_a2
D. B. Kaledin; A. A. Konovalov; K. O. Magidson. Spectral Algebras and Non-commutative Hodge-to-de Rham Degeneration. Informatics and Automation, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 63-77. http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a2/